Problem Rubio 04 logarquot

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputRubio 04 logarquot

stdout:

MAYBE

Problem:
 min(X,0()) -> X
 min(s(X),s(Y)) -> min(X,Y)
 quot(0(),s(Y)) -> 0()
 quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y)))
 log(s(0())) -> 0()
 log(s(s(X))) -> s(log(s(quot(X,s(s(0()))))))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputRubio 04 logarquot

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
YES(?,O(n^2))
InputRubio 04 logarquot

stdout:

YES(?,O(n^2))

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           YES(?,O(n^2))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  min(X, 0()) -> X
     , min(s(X), s(Y)) -> min(X, Y)
     , quot(0(), s(Y)) -> 0()
     , quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
     , log(s(0())) -> 0()
     , log(s(s(X))) -> s(log(s(quot(X, s(s(0()))))))}

Proof Output:    
  'wdg' proved the best result:
  
  Details:
  --------
    'wdg' succeeded with the following output:
     'wdg'
     -----
     Answer:           YES(?,O(n^2))
     Input Problem:    innermost runtime-complexity with respect to
       Rules:
         {  min(X, 0()) -> X
          , min(s(X), s(Y)) -> min(X, Y)
          , quot(0(), s(Y)) -> 0()
          , quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
          , log(s(0())) -> 0()
          , log(s(s(X))) -> s(log(s(quot(X, s(s(0()))))))}
     
     Proof Output:    
       Transformation Details:
       -----------------------
         We have computed the following set of weak (innermost) dependency pairs:
         
           {  1: min^#(X, 0()) -> c_0()
            , 2: min^#(s(X), s(Y)) -> c_1(min^#(X, Y))
            , 3: quot^#(0(), s(Y)) -> c_2()
            , 4: quot^#(s(X), s(Y)) -> c_3(quot^#(min(X, Y), s(Y)))
            , 5: log^#(s(0())) -> c_4()
            , 6: log^#(s(s(X))) -> c_5(log^#(s(quot(X, s(s(0()))))))}
         
         Following Dependency Graph (modulo SCCs) was computed. (Answers to
         subproofs are indicated to the right.)
         
           ->{6}                                                       [   YES(?,O(n^2))    ]
              |
              `->{5}                                                   [   YES(?,O(n^2))    ]
           
           ->{4}                                                       [   YES(?,O(n^2))    ]
              |
              `->{3}                                                   [   YES(?,O(n^1))    ]
           
           ->{2}                                                       [   YES(?,O(n^2))    ]
              |
              `->{1}                                                   [   YES(?,O(n^2))    ]
           
         
       
       Sub-problems:
       -------------
         * Path {2}: YES(?,O(n^2))
           -----------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(min) = {}, Uargs(s) = {}, Uargs(quot) = {}, Uargs(log) = {},
               Uargs(min^#) = {}, Uargs(c_1) = {1}, Uargs(quot^#) = {},
               Uargs(c_3) = {}, Uargs(log^#) = {}, Uargs(c_5) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
              0() = [0]
                    [0]
              s(x1) = [1 2] x1 + [0]
                      [0 0]      [0]
              quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
              log(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              min^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                              [3 3]      [3 3]      [0]
              c_0() = [0]
                      [0]
              c_1(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
              quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
              c_2() = [0]
                      [0]
              c_3(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              log^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
              c_4() = [0]
                      [0]
              c_5(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 2'
           --------------------------------------
           Answer:           YES(?,O(n^2))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {min^#(s(X), s(Y)) -> c_1(min^#(X, Y))}
             Weak Rules: {}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(s) = {}, Uargs(min^#) = {}, Uargs(c_1) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              s(x1) = [1 2] x1 + [1]
                      [0 1]      [2]
              min^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                              [0 2]      [0 0]      [0]
              c_1(x1) = [1 2] x1 + [5]
                        [0 0]      [3]
         
         * Path {2}->{1}: YES(?,O(n^2))
           ----------------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(min) = {}, Uargs(s) = {}, Uargs(quot) = {}, Uargs(log) = {},
               Uargs(min^#) = {}, Uargs(c_1) = {1}, Uargs(quot^#) = {},
               Uargs(c_3) = {}, Uargs(log^#) = {}, Uargs(c_5) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
              0() = [0]
                    [0]
              s(x1) = [0 0] x1 + [0]
                      [0 0]      [0]
              quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
              log(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
              c_0() = [0]
                      [0]
              c_1(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
              quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
              c_2() = [0]
                      [0]
              c_3(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              log^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
              c_4() = [0]
                      [0]
              c_5(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 2'
           --------------------------------------
           Answer:           YES(?,O(n^2))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {min^#(X, 0()) -> c_0()}
             Weak Rules: {min^#(s(X), s(Y)) -> c_1(min^#(X, Y))}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(s) = {}, Uargs(min^#) = {}, Uargs(c_1) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              0() = [2]
                    [0]
              s(x1) = [1 2] x1 + [2]
                      [0 1]      [0]
              min^#(x1, x2) = [2 1] x1 + [2 0] x2 + [4]
                              [0 0]      [4 1]      [0]
              c_0() = [1]
                      [0]
              c_1(x1) = [1 0] x1 + [6]
                        [0 0]      [7]
         
         * Path {4}: YES(?,O(n^2))
           -----------------------
           
           The usable rules for this path are:
           
             {  min(X, 0()) -> X
              , min(s(X), s(Y)) -> min(X, Y)}
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(min) = {}, Uargs(s) = {}, Uargs(quot) = {}, Uargs(log) = {},
               Uargs(min^#) = {}, Uargs(c_1) = {}, Uargs(quot^#) = {1},
               Uargs(c_3) = {1}, Uargs(log^#) = {}, Uargs(c_5) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              min(x1, x2) = [1 1] x1 + [0 0] x2 + [3]
                            [0 1]      [0 0]      [3]
              0() = [3]
                    [3]
              s(x1) = [1 1] x1 + [0]
                      [0 1]      [1]
              quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
              log(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
              c_0() = [0]
                      [0]
              c_1(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              quot^#(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                               [3 3]      [3 3]      [0]
              c_2() = [0]
                      [0]
              c_3(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
              log^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
              c_4() = [0]
                      [0]
              c_5(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
           Complexity induced by the adequate RMI: YES(?,O(n^2))
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 2'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {quot^#(s(X), s(Y)) -> c_3(quot^#(min(X, Y), s(Y)))}
             Weak Rules:
               {  min(X, 0()) -> X
                , min(s(X), s(Y)) -> min(X, Y)}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(min) = {}, Uargs(s) = {}, Uargs(quot^#) = {},
               Uargs(c_3) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              min(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                            [0 4]      [0 0]      [0]
              0() = [0]
                    [0]
              s(x1) = [1 0] x1 + [1]
                      [0 1]      [0]
              quot^#(x1, x2) = [2 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 1]      [0]
              c_3(x1) = [1 0] x1 + [1]
                        [0 0]      [0]
         
         * Path {4}->{3}: YES(?,O(n^1))
           ----------------------------
           
           The usable rules for this path are:
           
             {  min(X, 0()) -> X
              , min(s(X), s(Y)) -> min(X, Y)}
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(min) = {}, Uargs(s) = {}, Uargs(quot) = {}, Uargs(log) = {},
               Uargs(min^#) = {}, Uargs(c_1) = {}, Uargs(quot^#) = {1},
               Uargs(c_3) = {1}, Uargs(log^#) = {}, Uargs(c_5) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              min(x1, x2) = [2 0] x1 + [0 0] x2 + [3]
                            [0 2]      [0 0]      [3]
              0() = [3]
                    [3]
              s(x1) = [1 0] x1 + [1]
                      [0 1]      [0]
              quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
              log(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
              c_0() = [0]
                      [0]
              c_1(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              quot^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
              c_2() = [0]
                      [0]
              c_3(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
              log^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
              c_4() = [0]
                      [0]
              c_5(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
           Complexity induced by the adequate RMI: YES(?,O(n^1))
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 2'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {quot^#(0(), s(Y)) -> c_2()}
             Weak Rules:
               {  quot^#(s(X), s(Y)) -> c_3(quot^#(min(X, Y), s(Y)))
                , min(X, 0()) -> X
                , min(s(X), s(Y)) -> min(X, Y)}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(min) = {}, Uargs(s) = {}, Uargs(quot^#) = {},
               Uargs(c_3) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              min(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                            [4 4]      [0 0]      [0]
              0() = [0]
                    [0]
              s(x1) = [1 2] x1 + [1]
                      [0 0]      [2]
              quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                               [0 0]      [2 1]      [0]
              c_2() = [0]
                      [0]
              c_3(x1) = [1 0] x1 + [0]
                        [0 0]      [3]
         
         * Path {6}: YES(?,O(n^2))
           -----------------------
           
           The usable rules for this path are:
           
             {  quot(0(), s(Y)) -> 0()
              , quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
              , min(X, 0()) -> X
              , min(s(X), s(Y)) -> min(X, Y)}
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(min) = {}, Uargs(s) = {1}, Uargs(quot) = {1},
               Uargs(log) = {}, Uargs(min^#) = {}, Uargs(c_1) = {},
               Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(log^#) = {1},
               Uargs(c_5) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              min(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                            [0 1]      [0 0]      [0]
              0() = [0]
                    [2]
              s(x1) = [1 2] x1 + [2]
                      [0 1]      [2]
              quot(x1, x2) = [1 1] x1 + [0 0] x2 + [0]
                             [0 1]      [0 0]      [0]
              log(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
              c_0() = [0]
                      [0]
              c_1(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
              c_2() = [0]
                      [0]
              c_3(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              log^#(x1) = [1 0] x1 + [0]
                          [3 3]      [0]
              c_4() = [0]
                      [0]
              c_5(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
           Complexity induced by the adequate RMI: YES(?,O(n^2))
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 2'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {log^#(s(s(X))) -> c_5(log^#(s(quot(X, s(s(0()))))))}
             Weak Rules:
               {  quot(0(), s(Y)) -> 0()
                , quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
                , min(X, 0()) -> X
                , min(s(X), s(Y)) -> min(X, Y)}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(min) = {}, Uargs(s) = {}, Uargs(quot) = {},
               Uargs(log^#) = {}, Uargs(c_5) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              min(x1, x2) = [1 0] x1 + [2 2] x2 + [0]
                            [0 1]      [0 0]      [0]
              0() = [2]
                    [2]
              s(x1) = [1 0] x1 + [0]
                      [0 1]      [4]
              quot(x1, x2) = [0 3] x1 + [0 0] x2 + [0]
                             [0 1]      [0 0]      [0]
              log^#(x1) = [0 1] x1 + [0]
                          [4 0]      [0]
              c_5(x1) = [1 0] x1 + [3]
                        [0 0]      [0]
         
         * Path {6}->{5}: YES(?,O(n^2))
           ----------------------------
           
           The usable rules for this path are:
           
             {  quot(0(), s(Y)) -> 0()
              , quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
              , min(X, 0()) -> X
              , min(s(X), s(Y)) -> min(X, Y)}
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(min) = {}, Uargs(s) = {1}, Uargs(quot) = {1},
               Uargs(log) = {}, Uargs(min^#) = {}, Uargs(c_1) = {},
               Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(log^#) = {1},
               Uargs(c_5) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              min(x1, x2) = [1 1] x1 + [0 0] x2 + [1]
                            [0 1]      [0 0]      [0]
              0() = [1]
                    [0]
              s(x1) = [1 2] x1 + [0]
                      [0 1]      [3]
              quot(x1, x2) = [2 3] x1 + [3 2] x2 + [1]
                             [0 1]      [0 0]      [0]
              log(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
              c_0() = [0]
                      [0]
              c_1(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
              c_2() = [0]
                      [0]
              c_3(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              log^#(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
              c_4() = [0]
                      [0]
              c_5(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
           Complexity induced by the adequate RMI: YES(?,O(n^2))
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 2'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {log^#(s(0())) -> c_4()}
             Weak Rules:
               {  log^#(s(s(X))) -> c_5(log^#(s(quot(X, s(s(0()))))))
                , quot(0(), s(Y)) -> 0()
                , quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
                , min(X, 0()) -> X
                , min(s(X), s(Y)) -> min(X, Y)}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(min) = {}, Uargs(s) = {}, Uargs(quot) = {},
               Uargs(log^#) = {}, Uargs(c_5) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              min(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                            [4 4]      [4 0]      [0]
              0() = [0]
                    [0]
              s(x1) = [1 2] x1 + [0]
                      [0 0]      [0]
              quot(x1, x2) = [4 0] x1 + [0 0] x2 + [4]
                             [0 0]      [0 0]      [0]
              log^#(x1) = [0 0] x1 + [2]
                          [0 0]      [0]
              c_4() = [1]
                      [0]
              c_5(x1) = [1 0] x1 + [0]
                        [0 0]      [0]

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputRubio 04 logarquot

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
YES(?,O(n^2))
InputRubio 04 logarquot

stdout:

YES(?,O(n^2))

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           YES(?,O(n^2))
Input Problem:    runtime-complexity with respect to
  Rules:
    {  min(X, 0()) -> X
     , min(s(X), s(Y)) -> min(X, Y)
     , quot(0(), s(Y)) -> 0()
     , quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
     , log(s(0())) -> 0()
     , log(s(s(X))) -> s(log(s(quot(X, s(s(0()))))))}

Proof Output:    
  'wdg' proved the best result:
  
  Details:
  --------
    'wdg' succeeded with the following output:
     'wdg'
     -----
     Answer:           YES(?,O(n^2))
     Input Problem:    runtime-complexity with respect to
       Rules:
         {  min(X, 0()) -> X
          , min(s(X), s(Y)) -> min(X, Y)
          , quot(0(), s(Y)) -> 0()
          , quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
          , log(s(0())) -> 0()
          , log(s(s(X))) -> s(log(s(quot(X, s(s(0()))))))}
     
     Proof Output:    
       Transformation Details:
       -----------------------
         We have computed the following set of weak (innermost) dependency pairs:
         
           {  1: min^#(X, 0()) -> c_0(X)
            , 2: min^#(s(X), s(Y)) -> c_1(min^#(X, Y))
            , 3: quot^#(0(), s(Y)) -> c_2()
            , 4: quot^#(s(X), s(Y)) -> c_3(quot^#(min(X, Y), s(Y)))
            , 5: log^#(s(0())) -> c_4()
            , 6: log^#(s(s(X))) -> c_5(log^#(s(quot(X, s(s(0()))))))}
         
         Following Dependency Graph (modulo SCCs) was computed. (Answers to
         subproofs are indicated to the right.)
         
           ->{6}                                                       [   YES(?,O(n^2))    ]
              |
              `->{5}                                                   [   YES(?,O(n^1))    ]
           
           ->{4}                                                       [   YES(?,O(n^2))    ]
              |
              `->{3}                                                   [   YES(?,O(n^1))    ]
           
           ->{2}                                                       [   YES(?,O(n^2))    ]
              |
              `->{1}                                                   [   YES(?,O(n^2))    ]
           
         
       
       Sub-problems:
       -------------
         * Path {2}: YES(?,O(n^2))
           -----------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(min) = {}, Uargs(s) = {}, Uargs(quot) = {}, Uargs(log) = {},
               Uargs(min^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
               Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(log^#) = {},
               Uargs(c_5) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
              0() = [0]
                    [0]
              s(x1) = [1 2] x1 + [0]
                      [0 0]      [0]
              quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
              log(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              min^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                              [3 3]      [3 3]      [0]
              c_0(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              c_1(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
              quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
              c_2() = [0]
                      [0]
              c_3(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              log^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
              c_4() = [0]
                      [0]
              c_5(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 2'
           --------------------------------------
           Answer:           YES(?,O(n^2))
           Input Problem:    DP runtime-complexity with respect to
             Strict Rules: {min^#(s(X), s(Y)) -> c_1(min^#(X, Y))}
             Weak Rules: {}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(s) = {}, Uargs(min^#) = {}, Uargs(c_1) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              s(x1) = [1 2] x1 + [1]
                      [0 1]      [2]
              min^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                              [0 2]      [0 0]      [0]
              c_1(x1) = [1 2] x1 + [5]
                        [0 0]      [3]
         
         * Path {2}->{1}: YES(?,O(n^2))
           ----------------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(min) = {}, Uargs(s) = {}, Uargs(quot) = {}, Uargs(log) = {},
               Uargs(min^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
               Uargs(quot^#) = {}, Uargs(c_3) = {}, Uargs(log^#) = {},
               Uargs(c_5) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
              0() = [0]
                    [0]
              s(x1) = [0 0] x1 + [0]
                      [0 0]      [0]
              quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
              log(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              min^#(x1, x2) = [3 3] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
              c_0(x1) = [1 1] x1 + [0]
                        [0 0]      [0]
              c_1(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
              quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
              c_2() = [0]
                      [0]
              c_3(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              log^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
              c_4() = [0]
                      [0]
              c_5(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 2'
           --------------------------------------
           Answer:           YES(?,O(n^2))
           Input Problem:    DP runtime-complexity with respect to
             Strict Rules: {min^#(X, 0()) -> c_0(X)}
             Weak Rules: {min^#(s(X), s(Y)) -> c_1(min^#(X, Y))}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(s) = {}, Uargs(min^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              0() = [0]
                    [2]
              s(x1) = [1 2] x1 + [0]
                      [0 1]      [0]
              min^#(x1, x2) = [2 2] x1 + [0 2] x2 + [0]
                              [4 1]      [3 2]      [0]
              c_0(x1) = [0 0] x1 + [1]
                        [0 1]      [0]
              c_1(x1) = [1 0] x1 + [0]
                        [2 0]      [0]
         
         * Path {4}: YES(?,O(n^2))
           -----------------------
           
           The usable rules for this path are:
           
             {  min(X, 0()) -> X
              , min(s(X), s(Y)) -> min(X, Y)}
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(min) = {}, Uargs(s) = {}, Uargs(quot) = {}, Uargs(log) = {},
               Uargs(min^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
               Uargs(quot^#) = {1}, Uargs(c_3) = {1}, Uargs(log^#) = {},
               Uargs(c_5) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              min(x1, x2) = [1 1] x1 + [0 0] x2 + [3]
                            [0 1]      [0 0]      [3]
              0() = [3]
                    [3]
              s(x1) = [1 1] x1 + [0]
                      [0 1]      [1]
              quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
              log(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
              c_0(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              c_1(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              quot^#(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                               [3 3]      [3 3]      [0]
              c_2() = [0]
                      [0]
              c_3(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
              log^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
              c_4() = [0]
                      [0]
              c_5(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
           Complexity induced by the adequate RMI: YES(?,O(n^2))
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 2'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    DP runtime-complexity with respect to
             Strict Rules: {quot^#(s(X), s(Y)) -> c_3(quot^#(min(X, Y), s(Y)))}
             Weak Rules:
               {  min(X, 0()) -> X
                , min(s(X), s(Y)) -> min(X, Y)}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(min) = {}, Uargs(s) = {}, Uargs(quot^#) = {},
               Uargs(c_3) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              min(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                            [0 4]      [0 0]      [0]
              0() = [0]
                    [0]
              s(x1) = [1 0] x1 + [1]
                      [0 1]      [0]
              quot^#(x1, x2) = [2 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 1]      [0]
              c_3(x1) = [1 0] x1 + [1]
                        [0 0]      [0]
         
         * Path {4}->{3}: YES(?,O(n^1))
           ----------------------------
           
           The usable rules for this path are:
           
             {  min(X, 0()) -> X
              , min(s(X), s(Y)) -> min(X, Y)}
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(min) = {}, Uargs(s) = {}, Uargs(quot) = {}, Uargs(log) = {},
               Uargs(min^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
               Uargs(quot^#) = {1}, Uargs(c_3) = {1}, Uargs(log^#) = {},
               Uargs(c_5) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              min(x1, x2) = [2 0] x1 + [0 0] x2 + [3]
                            [0 2]      [0 0]      [3]
              0() = [3]
                    [3]
              s(x1) = [1 0] x1 + [1]
                      [0 1]      [0]
              quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
              log(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
              c_0(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              c_1(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              quot^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
              c_2() = [0]
                      [0]
              c_3(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
              log^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
              c_4() = [0]
                      [0]
              c_5(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
           Complexity induced by the adequate RMI: YES(?,O(n^1))
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 2'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    DP runtime-complexity with respect to
             Strict Rules: {quot^#(0(), s(Y)) -> c_2()}
             Weak Rules:
               {  quot^#(s(X), s(Y)) -> c_3(quot^#(min(X, Y), s(Y)))
                , min(X, 0()) -> X
                , min(s(X), s(Y)) -> min(X, Y)}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(min) = {}, Uargs(s) = {}, Uargs(quot^#) = {},
               Uargs(c_3) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              min(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                            [4 4]      [0 0]      [0]
              0() = [0]
                    [0]
              s(x1) = [1 2] x1 + [1]
                      [0 0]      [2]
              quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                               [0 0]      [2 1]      [0]
              c_2() = [0]
                      [0]
              c_3(x1) = [1 0] x1 + [0]
                        [0 0]      [3]
         
         * Path {6}: YES(?,O(n^2))
           -----------------------
           
           The usable rules for this path are:
           
             {  quot(0(), s(Y)) -> 0()
              , quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
              , min(X, 0()) -> X
              , min(s(X), s(Y)) -> min(X, Y)}
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(min) = {1}, Uargs(s) = {1}, Uargs(quot) = {1},
               Uargs(log) = {}, Uargs(min^#) = {}, Uargs(c_0) = {},
               Uargs(c_1) = {}, Uargs(quot^#) = {}, Uargs(c_3) = {},
               Uargs(log^#) = {1}, Uargs(c_5) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              min(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                            [0 1]      [0 0]      [0]
              0() = [0]
                    [0]
              s(x1) = [1 2] x1 + [1]
                      [0 1]      [2]
              quot(x1, x2) = [1 2] x1 + [0 0] x2 + [3]
                             [0 1]      [0 0]      [0]
              log(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
              c_0(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              c_1(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
              c_2() = [0]
                      [0]
              c_3(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              log^#(x1) = [2 0] x1 + [0]
                          [3 3]      [0]
              c_4() = [0]
                      [0]
              c_5(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
           Complexity induced by the adequate RMI: YES(?,O(n^2))
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 2'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    DP runtime-complexity with respect to
             Strict Rules: {log^#(s(s(X))) -> c_5(log^#(s(quot(X, s(s(0()))))))}
             Weak Rules:
               {  quot(0(), s(Y)) -> 0()
                , quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
                , min(X, 0()) -> X
                , min(s(X), s(Y)) -> min(X, Y)}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(min) = {}, Uargs(s) = {}, Uargs(quot) = {},
               Uargs(log^#) = {}, Uargs(c_5) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              min(x1, x2) = [1 0] x1 + [2 2] x2 + [0]
                            [0 1]      [0 0]      [0]
              0() = [2]
                    [2]
              s(x1) = [1 0] x1 + [0]
                      [0 1]      [4]
              quot(x1, x2) = [0 3] x1 + [0 0] x2 + [0]
                             [0 1]      [0 0]      [0]
              log^#(x1) = [0 1] x1 + [0]
                          [4 0]      [0]
              c_5(x1) = [1 0] x1 + [3]
                        [0 0]      [0]
         
         * Path {6}->{5}: YES(?,O(n^1))
           ----------------------------
           
           The usable rules for this path are:
           
             {  quot(0(), s(Y)) -> 0()
              , quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
              , min(X, 0()) -> X
              , min(s(X), s(Y)) -> min(X, Y)}
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(min) = {1}, Uargs(s) = {1}, Uargs(quot) = {1},
               Uargs(log) = {}, Uargs(min^#) = {}, Uargs(c_0) = {},
               Uargs(c_1) = {}, Uargs(quot^#) = {}, Uargs(c_3) = {},
               Uargs(log^#) = {1}, Uargs(c_5) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              min(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                            [0 1]      [0 0]      [0]
              0() = [0]
                    [0]
              s(x1) = [1 0] x1 + [1]
                      [0 1]      [2]
              quot(x1, x2) = [1 1] x1 + [0 0] x2 + [1]
                             [0 2]      [0 0]      [0]
              log(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
              c_0(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              c_1(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
              c_2() = [0]
                      [0]
              c_3(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
              log^#(x1) = [3 0] x1 + [0]
                          [0 0]      [0]
              c_4() = [0]
                      [0]
              c_5(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
           Complexity induced by the adequate RMI: YES(?,O(n^1))
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 2'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    DP runtime-complexity with respect to
             Strict Rules: {log^#(s(0())) -> c_4()}
             Weak Rules:
               {  log^#(s(s(X))) -> c_5(log^#(s(quot(X, s(s(0()))))))
                , quot(0(), s(Y)) -> 0()
                , quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))
                , min(X, 0()) -> X
                , min(s(X), s(Y)) -> min(X, Y)}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(min) = {}, Uargs(s) = {}, Uargs(quot) = {},
               Uargs(log^#) = {}, Uargs(c_5) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              min(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                            [4 4]      [4 0]      [0]
              0() = [0]
                    [0]
              s(x1) = [1 2] x1 + [0]
                      [0 0]      [0]
              quot(x1, x2) = [4 0] x1 + [0 0] x2 + [4]
                             [0 0]      [0 0]      [0]
              log^#(x1) = [0 0] x1 + [2]
                          [0 0]      [0]
              c_4() = [1]
                      [0]
              c_5(x1) = [1 0] x1 + [0]
                        [0 0]      [0]