Problem Rubio 04 quotminus

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputRubio 04 quotminus

stdout:

MAYBE

Problem:
 plus(0(),Y) -> Y
 plus(s(X),Y) -> s(plus(X,Y))
 min(X,0()) -> X
 min(s(X),s(Y)) -> min(X,Y)
 min(min(X,Y),Z()) -> min(X,plus(Y,Z()))
 quot(0(),s(Y)) -> 0()
 quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y)))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputRubio 04 quotminus

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputRubio 04 quotminus

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  plus(0(), Y) -> Y
     , plus(s(X), Y) -> s(plus(X, Y))
     , min(X, 0()) -> X
     , min(s(X), s(Y)) -> min(X, Y)
     , min(min(X, Y), Z()) -> min(X, plus(Y, Z()))
     , quot(0(), s(Y)) -> 0()
     , quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(0(), Y) -> c_0()
              , 2: plus^#(s(X), Y) -> c_1(plus^#(X, Y))
              , 3: min^#(X, 0()) -> c_2()
              , 4: min^#(s(X), s(Y)) -> c_3(min^#(X, Y))
              , 5: min^#(min(X, Y), Z()) -> c_4(min^#(X, plus(Y, Z())))
              , 6: quot^#(0(), s(Y)) -> c_5()
              , 7: quot^#(s(X), s(Y)) -> c_6(quot^#(min(X, Y), s(Y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [       MAYBE        ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{4,5}                                                     [         NA         ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [   YES(?,O(n^3))    ]
                |
                `->{1}                                                   [   YES(?,O(n^3))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^3))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(min) = {}, Uargs(quot) = {},
                 Uargs(plus^#) = {}, Uargs(c_1) = {1}, Uargs(min^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(quot^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                min(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                Z() = [0]
                      [0]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [3 3 3] x2 + [0]
                                 [3 3 3]      [3 3 3]      [0]
                                 [3 3 3]      [3 3 3]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                min^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {plus^#(s(X), Y) -> c_1(plus^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 4 4] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 1]      [2]
                plus^#(x1, x2) = [0 1 2] x1 + [0 0 0] x2 + [2]
                                 [2 2 2]      [4 4 4]      [0]
                                 [2 0 2]      [4 4 4]      [0]
                c_1(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [6]
                          [2 0 0]      [2]
           
           * Path {2}->{1}: YES(?,O(n^3))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(min) = {}, Uargs(quot) = {},
                 Uargs(plus^#) = {}, Uargs(c_1) = {1}, Uargs(min^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(quot^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                min(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                Z() = [0]
                      [0]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                min^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {plus^#(0(), Y) -> c_0()}
               Weak Rules: {plus^#(s(X), Y) -> c_1(plus^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 4 0] x1 + [0]
                        [0 1 3]      [2]
                        [0 0 1]      [2]
                plus^#(x1, x2) = [0 3 2] x1 + [0 0 0] x2 + [0]
                                 [2 2 2]      [4 4 0]      [0]
                                 [2 2 2]      [4 4 0]      [0]
                c_0() = [1]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {4,5}: NA
             --------------
             
             The usable rules for this path are:
             
               {  plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {1}, Uargs(min) = {},
                 Uargs(quot) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {},
                 Uargs(min^#) = {2}, Uargs(c_3) = {1}, Uargs(c_4) = {1},
                 Uargs(quot^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [2 0 0] x1 + [3 3 3] x2 + [2]
                               [2 0 0]      [3 3 3]      [0]
                               [0 0 0]      [3 3 3]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
                min(x1, x2) = [1 2 1] x1 + [2 0 0] x2 + [0]
                              [0 0 0]      [3 0 0]      [0]
                              [0 0 0]      [3 0 0]      [0]
                Z() = [0]
                      [0]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                min^#(x1, x2) = [2 3 1] x1 + [2 0 0] x2 + [0]
                                [3 3 3]      [3 3 3]      [0]
                                [3 3 3]      [3 3 3]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4,5}->{3}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {1}, Uargs(min) = {},
                 Uargs(quot) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {},
                 Uargs(min^#) = {2}, Uargs(c_3) = {1}, Uargs(c_4) = {1},
                 Uargs(quot^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [2 0 0] x1 + [3 3 3] x2 + [2]
                               [0 0 0]      [3 3 3]      [0]
                               [0 0 0]      [3 3 3]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                min(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                Z() = [0]
                      [0]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                min^#(x1, x2) = [0 0 0] x1 + [3 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  min(X, 0()) -> X
                , min(s(X), s(Y)) -> min(X, Y)
                , min(min(X, Y), Z()) -> min(X, plus(Y, Z()))
                , plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  quot^#(s(X), s(Y)) -> c_6(quot^#(min(X, Y), s(Y)))
                  , min(X, 0()) -> X
                  , min(s(X), s(Y)) -> min(X, Y)
                  , min(min(X, Y), Z()) -> min(X, plus(Y, Z()))
                  , plus(0(), Y) -> Y
                  , plus(s(X), Y) -> s(plus(X, Y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {7}->{6}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  min(X, 0()) -> X
                , min(s(X), s(Y)) -> min(X, Y)
                , min(min(X, Y), Z()) -> min(X, plus(Y, Z()))
                , plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {1}, Uargs(min) = {2},
                 Uargs(quot) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {},
                 Uargs(min^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(quot^#) = {1}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 1] x1 + [2 0 0] x2 + [0]
                               [0 0 0]      [0 1 0]      [0]
                               [0 0 2]      [0 0 2]      [0]
                0() = [2]
                      [0]
                      [1]
                s(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 1]      [2]
                min(x1, x2) = [2 3 2] x1 + [2 0 0] x2 + [0]
                              [0 3 0]      [0 0 0]      [3]
                              [0 0 2]      [0 0 1]      [0]
                Z() = [0]
                      [0]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                min^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [3 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(0(), Y) -> c_0()
              , 2: plus^#(s(X), Y) -> c_1(plus^#(X, Y))
              , 3: min^#(X, 0()) -> c_2()
              , 4: min^#(s(X), s(Y)) -> c_3(min^#(X, Y))
              , 5: min^#(min(X, Y), Z()) -> c_4(min^#(X, plus(Y, Z())))
              , 6: quot^#(0(), s(Y)) -> c_5()
              , 7: quot^#(s(X), s(Y)) -> c_6(quot^#(min(X, Y), s(Y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [       MAYBE        ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{4,5}                                                     [         NA         ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(min) = {}, Uargs(quot) = {},
                 Uargs(plus^#) = {}, Uargs(c_1) = {1}, Uargs(min^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(quot^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                Z() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                 [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {plus^#(s(X), Y) -> c_1(plus^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [2]
                plus^#(x1, x2) = [0 1] x1 + [0 0] x2 + [0]
                                 [4 5]      [4 4]      [0]
                c_1(x1) = [1 0] x1 + [1]
                          [0 0]      [7]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(min) = {}, Uargs(quot) = {},
                 Uargs(plus^#) = {}, Uargs(c_1) = {1}, Uargs(min^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(quot^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                Z() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {plus^#(0(), Y) -> c_0()}
               Weak Rules: {plus^#(s(X), Y) -> c_1(plus^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [1 3] x1 + [2]
                        [0 0]      [2]
                plus^#(x1, x2) = [3 0] x1 + [0 0] x2 + [4]
                                 [2 2]      [0 4]      [0]
                c_0() = [1]
                        [0]
                c_1(x1) = [1 0] x1 + [3]
                          [0 0]      [7]
           
           * Path {4,5}: NA
             --------------
             
             The usable rules for this path are:
             
               {  plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {1}, Uargs(min) = {},
                 Uargs(quot) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {},
                 Uargs(min^#) = {2}, Uargs(c_3) = {1}, Uargs(c_4) = {1},
                 Uargs(quot^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [3 0] x1 + [3 3] x2 + [2]
                               [0 0]      [3 3]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 1]      [0]
                min(x1, x2) = [1 2] x1 + [0 0] x2 + [0]
                              [0 0]      [2 0]      [0]
                Z() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                min^#(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4,5}->{3}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {1}, Uargs(min) = {},
                 Uargs(quot) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {},
                 Uargs(min^#) = {2}, Uargs(c_3) = {1}, Uargs(c_4) = {1},
                 Uargs(quot^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [2 0] x1 + [3 3] x2 + [2]
                               [0 0]      [3 3]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                Z() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                min^#(x1, x2) = [0 0] x1 + [3 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  min(X, 0()) -> X
                , min(s(X), s(Y)) -> min(X, Y)
                , min(min(X, Y), Z()) -> min(X, plus(Y, Z()))
                , plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  quot^#(s(X), s(Y)) -> c_6(quot^#(min(X, Y), s(Y)))
                  , min(X, 0()) -> X
                  , min(s(X), s(Y)) -> min(X, Y)
                  , min(min(X, Y), Z()) -> min(X, plus(Y, Z()))
                  , plus(0(), Y) -> Y
                  , plus(s(X), Y) -> s(plus(X, Y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {7}->{6}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  min(X, 0()) -> X
                , min(s(X), s(Y)) -> min(X, Y)
                , min(min(X, Y), Z()) -> min(X, plus(Y, Z()))
                , plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {1}, Uargs(min) = {2},
                 Uargs(quot) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {},
                 Uargs(min^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(quot^#) = {1}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [1 3] x1 + [1 0] x2 + [0]
                               [0 1]      [0 2]      [0]
                0() = [1]
                      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [3]
                min(x1, x2) = [1 3] x1 + [1 0] x2 + [2]
                              [0 2]      [0 2]      [0]
                Z() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(0(), Y) -> c_0()
              , 2: plus^#(s(X), Y) -> c_1(plus^#(X, Y))
              , 3: min^#(X, 0()) -> c_2()
              , 4: min^#(s(X), s(Y)) -> c_3(min^#(X, Y))
              , 5: min^#(min(X, Y), Z()) -> c_4(min^#(X, plus(Y, Z())))
              , 6: quot^#(0(), s(Y)) -> c_5()
              , 7: quot^#(s(X), s(Y)) -> c_6(quot^#(min(X, Y), s(Y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [       MAYBE        ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{4,5}                                                     [         NA         ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(min) = {}, Uargs(quot) = {},
                 Uargs(plus^#) = {}, Uargs(c_1) = {1}, Uargs(min^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(quot^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                Z() = [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                plus^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                min^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {plus^#(s(X), Y) -> c_1(plus^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                plus^#(x1, x2) = [2] x1 + [7] x2 + [0]
                c_1(x1) = [1] x1 + [7]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(min) = {}, Uargs(quot) = {},
                 Uargs(plus^#) = {}, Uargs(c_1) = {1}, Uargs(min^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(quot^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                Z() = [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                min^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {plus^#(0(), Y) -> c_0()}
               Weak Rules: {plus^#(s(X), Y) -> c_1(plus^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                plus^#(x1, x2) = [2] x1 + [7] x2 + [4]
                c_0() = [1]
                c_1(x1) = [1] x1 + [4]
           
           * Path {4,5}: NA
             --------------
             
             The usable rules for this path are:
             
               {  plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {1}, Uargs(min) = {},
                 Uargs(quot) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {},
                 Uargs(min^#) = {2}, Uargs(c_3) = {1}, Uargs(c_4) = {1},
                 Uargs(quot^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [3] x1 + [3] x2 + [3]
                0() = [1]
                s(x1) = [1] x1 + [2]
                min(x1, x2) = [3] x1 + [3] x2 + [0]
                Z() = [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                min^#(x1, x2) = [1] x1 + [1] x2 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4,5}->{3}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {1}, Uargs(min) = {},
                 Uargs(quot) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {},
                 Uargs(min^#) = {2}, Uargs(c_3) = {1}, Uargs(c_4) = {1},
                 Uargs(quot^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [2] x1 + [3] x2 + [0]
                0() = [3]
                s(x1) = [1] x1 + [1]
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                Z() = [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                min^#(x1, x2) = [0] x1 + [3] x2 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  min(X, 0()) -> X
                , min(s(X), s(Y)) -> min(X, Y)
                , min(min(X, Y), Z()) -> min(X, plus(Y, Z()))
                , plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  quot^#(s(X), s(Y)) -> c_6(quot^#(min(X, Y), s(Y)))
                  , min(X, 0()) -> X
                  , min(s(X), s(Y)) -> min(X, Y)
                  , min(min(X, Y), Z()) -> min(X, plus(Y, Z()))
                  , plus(0(), Y) -> Y
                  , plus(s(X), Y) -> s(plus(X, Y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {7}->{6}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  min(X, 0()) -> X
                , min(s(X), s(Y)) -> min(X, Y)
                , min(min(X, Y), Z()) -> min(X, plus(Y, Z()))
                , plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {1}, Uargs(min) = {2},
                 Uargs(quot) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {},
                 Uargs(min^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(quot^#) = {1}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [2] x1 + [2] x2 + [1]
                0() = [0]
                s(x1) = [1] x1 + [1]
                min(x1, x2) = [3] x1 + [2] x2 + [1]
                Z() = [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                min^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputRubio 04 quotminus

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputRubio 04 quotminus

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  plus(0(), Y) -> Y
     , plus(s(X), Y) -> s(plus(X, Y))
     , min(X, 0()) -> X
     , min(s(X), s(Y)) -> min(X, Y)
     , min(min(X, Y), Z()) -> min(X, plus(Y, Z()))
     , quot(0(), s(Y)) -> 0()
     , quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(0(), Y) -> c_0(Y)
              , 2: plus^#(s(X), Y) -> c_1(plus^#(X, Y))
              , 3: min^#(X, 0()) -> c_2(X)
              , 4: min^#(s(X), s(Y)) -> c_3(min^#(X, Y))
              , 5: min^#(min(X, Y), Z()) -> c_4(min^#(X, plus(Y, Z())))
              , 6: quot^#(0(), s(Y)) -> c_5()
              , 7: quot^#(s(X), s(Y)) -> c_6(quot^#(min(X, Y), s(Y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [       MAYBE        ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{4,5}                                                     [         NA         ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [   YES(?,O(n^3))    ]
                |
                `->{1}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^3))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(min) = {}, Uargs(quot) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(quot^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                min(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                Z() = [0]
                      [0]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [3 3 3] x2 + [0]
                                 [3 3 3]      [3 3 3]      [0]
                                 [3 3 3]      [3 3 3]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                min^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {plus^#(s(X), Y) -> c_1(plus^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 4 4] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 1]      [2]
                plus^#(x1, x2) = [0 1 2] x1 + [0 0 0] x2 + [2]
                                 [2 2 2]      [4 4 4]      [0]
                                 [2 0 2]      [4 4 4]      [0]
                c_1(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [6]
                          [2 0 0]      [2]
           
           * Path {2}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(min) = {}, Uargs(quot) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(quot^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                min(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                Z() = [0]
                      [0]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [3 3 3] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                min^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {plus^#(0(), Y) -> c_0(Y)}
               Weak Rules: {plus^#(s(X), Y) -> c_1(plus^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                      [0]
                s(x1) = [1 2 3] x1 + [0]
                        [0 0 3]      [2]
                        [0 0 1]      [2]
                plus^#(x1, x2) = [2 2 2] x1 + [0 0 0] x2 + [2]
                                 [0 2 2]      [0 0 0]      [0]
                                 [4 0 0]      [4 0 4]      [4]
                c_0(x1) = [0 0 0] x1 + [1]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [5]
                          [0 0 0]      [7]
                          [2 2 0]      [0]
           
           * Path {4,5}: NA
             --------------
             
             The usable rules for this path are:
             
               {  plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {1}, Uargs(min) = {},
                 Uargs(quot) = {}, Uargs(plus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(min^#) = {2}, Uargs(c_2) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {1}, Uargs(quot^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [2 0 0] x1 + [3 3 3] x2 + [2]
                               [2 0 0]      [3 3 3]      [0]
                               [0 0 0]      [3 3 3]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
                min(x1, x2) = [1 2 1] x1 + [2 0 0] x2 + [0]
                              [0 0 0]      [3 0 0]      [0]
                              [0 0 0]      [3 0 0]      [0]
                Z() = [0]
                      [0]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                min^#(x1, x2) = [2 3 1] x1 + [2 0 0] x2 + [0]
                                [3 3 3]      [3 3 3]      [0]
                                [3 3 3]      [3 3 3]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4,5}->{3}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {1}, Uargs(min) = {},
                 Uargs(quot) = {}, Uargs(plus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(min^#) = {2}, Uargs(c_2) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {1}, Uargs(quot^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [3 0 0] x1 + [3 3 3] x2 + [2]
                               [0 0 0]      [3 3 3]      [0]
                               [0 0 0]      [3 3 3]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                min(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                Z() = [0]
                      [0]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                min^#(x1, x2) = [3 3 3] x1 + [3 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                quot^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  min(X, 0()) -> X
                , min(s(X), s(Y)) -> min(X, Y)
                , min(min(X, Y), Z()) -> min(X, plus(Y, Z()))
                , plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  quot^#(s(X), s(Y)) -> c_6(quot^#(min(X, Y), s(Y)))
                  , min(X, 0()) -> X
                  , min(s(X), s(Y)) -> min(X, Y)
                  , min(min(X, Y), Z()) -> min(X, plus(Y, Z()))
                  , plus(0(), Y) -> Y
                  , plus(s(X), Y) -> s(plus(X, Y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {7}->{6}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  min(X, 0()) -> X
                , min(s(X), s(Y)) -> min(X, Y)
                , min(min(X, Y), Z()) -> min(X, plus(Y, Z()))
                , plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {1}, Uargs(s) = {1}, Uargs(min) = {1, 2},
                 Uargs(quot) = {}, Uargs(plus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(min^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(quot^#) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [1 2 0] x1 + [1 0 0] x2 + [2]
                               [0 1 1]      [2 2 0]      [0]
                               [0 0 0]      [0 0 1]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [1]
                        [0 0 1]      [0]
                min(x1, x2) = [1 2 0] x1 + [1 0 1] x2 + [3]
                              [3 1 0]      [0 1 0]      [3]
                              [0 0 1]      [0 0 0]      [0]
                Z() = [3]
                      [1]
                      [0]
                quot(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                min^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                quot^#(x1, x2) = [3 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(0(), Y) -> c_0(Y)
              , 2: plus^#(s(X), Y) -> c_1(plus^#(X, Y))
              , 3: min^#(X, 0()) -> c_2(X)
              , 4: min^#(s(X), s(Y)) -> c_3(min^#(X, Y))
              , 5: min^#(min(X, Y), Z()) -> c_4(min^#(X, plus(Y, Z())))
              , 6: quot^#(0(), s(Y)) -> c_5()
              , 7: quot^#(s(X), s(Y)) -> c_6(quot^#(min(X, Y), s(Y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [       MAYBE        ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{4,5}                                                     [         NA         ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(min) = {}, Uargs(quot) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(quot^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                Z() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                 [3 3]      [3 3]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {plus^#(s(X), Y) -> c_1(plus^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [2]
                plus^#(x1, x2) = [0 1] x1 + [0 0] x2 + [0]
                                 [4 5]      [4 4]      [0]
                c_1(x1) = [1 0] x1 + [1]
                          [0 0]      [7]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(min) = {}, Uargs(quot) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(quot^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                Z() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [3 3] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {plus^#(0(), Y) -> c_0(Y)}
               Weak Rules: {plus^#(s(X), Y) -> c_1(plus^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                plus^#(x1, x2) = [2 0] x1 + [0 0] x2 + [4]
                                 [2 2]      [4 4]      [0]
                c_0(x1) = [0 0] x1 + [1]
                          [0 0]      [0]
                c_1(x1) = [1 0] x1 + [3]
                          [0 0]      [4]
           
           * Path {4,5}: NA
             --------------
             
             The usable rules for this path are:
             
               {  plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {1}, Uargs(min) = {},
                 Uargs(quot) = {}, Uargs(plus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(min^#) = {2}, Uargs(c_2) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {1}, Uargs(quot^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [3 0] x1 + [3 3] x2 + [2]
                               [0 0]      [3 3]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 1]      [0]
                min(x1, x2) = [1 2] x1 + [0 0] x2 + [0]
                              [0 0]      [2 0]      [0]
                Z() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                min^#(x1, x2) = [1 2] x1 + [1 0] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4,5}->{3}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {1}, Uargs(min) = {},
                 Uargs(quot) = {}, Uargs(plus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(min^#) = {2}, Uargs(c_2) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {1}, Uargs(quot^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [2 0] x1 + [3 3] x2 + [2]
                               [0 0]      [3 3]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                min(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                Z() = [0]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                min^#(x1, x2) = [3 3] x1 + [3 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                quot^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  min(X, 0()) -> X
                , min(s(X), s(Y)) -> min(X, Y)
                , min(min(X, Y), Z()) -> min(X, plus(Y, Z()))
                , plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  quot^#(s(X), s(Y)) -> c_6(quot^#(min(X, Y), s(Y)))
                  , min(X, 0()) -> X
                  , min(s(X), s(Y)) -> min(X, Y)
                  , min(min(X, Y), Z()) -> min(X, plus(Y, Z()))
                  , plus(0(), Y) -> Y
                  , plus(s(X), Y) -> s(plus(X, Y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {7}->{6}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  min(X, 0()) -> X
                , min(s(X), s(Y)) -> min(X, Y)
                , min(min(X, Y), Z()) -> min(X, plus(Y, Z()))
                , plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {1}, Uargs(s) = {1}, Uargs(min) = {1, 2},
                 Uargs(quot) = {}, Uargs(plus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(min^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(quot^#) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [2 0] x1 + [2 0] x2 + [0]
                               [0 0]      [0 1]      [0]
                0() = [2]
                      [0]
                s(x1) = [1 0] x1 + [1]
                        [0 1]      [0]
                min(x1, x2) = [1 1] x1 + [1 0] x2 + [2]
                              [0 2]      [1 0]      [1]
                Z() = [1]
                      [0]
                quot(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                min^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                quot^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(0(), Y) -> c_0(Y)
              , 2: plus^#(s(X), Y) -> c_1(plus^#(X, Y))
              , 3: min^#(X, 0()) -> c_2(X)
              , 4: min^#(s(X), s(Y)) -> c_3(min^#(X, Y))
              , 5: min^#(min(X, Y), Z()) -> c_4(min^#(X, plus(Y, Z())))
              , 6: quot^#(0(), s(Y)) -> c_5()
              , 7: quot^#(s(X), s(Y)) -> c_6(quot^#(min(X, Y), s(Y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [       MAYBE        ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{4,5}                                                     [         NA         ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(min) = {}, Uargs(quot) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(quot^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                Z() = [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                plus^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                min^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {plus^#(s(X), Y) -> c_1(plus^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                plus^#(x1, x2) = [2] x1 + [7] x2 + [0]
                c_1(x1) = [1] x1 + [7]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {}, Uargs(min) = {}, Uargs(quot) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(min^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}, Uargs(quot^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                Z() = [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                plus^#(x1, x2) = [0] x1 + [3] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                min^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {plus^#(0(), Y) -> c_0(Y)}
               Weak Rules: {plus^#(s(X), Y) -> c_1(plus^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(plus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                plus^#(x1, x2) = [3] x1 + [7] x2 + [2]
                c_0(x1) = [1] x1 + [1]
                c_1(x1) = [1] x1 + [5]
           
           * Path {4,5}: NA
             --------------
             
             The usable rules for this path are:
             
               {  plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {1}, Uargs(min) = {},
                 Uargs(quot) = {}, Uargs(plus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(min^#) = {2}, Uargs(c_2) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {1}, Uargs(quot^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [3] x1 + [3] x2 + [3]
                0() = [1]
                s(x1) = [1] x1 + [2]
                min(x1, x2) = [3] x1 + [3] x2 + [0]
                Z() = [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                min^#(x1, x2) = [1] x1 + [1] x2 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4,5}->{3}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(s) = {1}, Uargs(min) = {},
                 Uargs(quot) = {}, Uargs(plus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(min^#) = {2}, Uargs(c_2) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {1}, Uargs(quot^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [2] x1 + [3] x2 + [0]
                0() = [3]
                s(x1) = [1] x1 + [1]
                min(x1, x2) = [0] x1 + [0] x2 + [0]
                Z() = [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                min^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_2(x1) = [1] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                quot^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  min(X, 0()) -> X
                , min(s(X), s(Y)) -> min(X, Y)
                , min(min(X, Y), Z()) -> min(X, plus(Y, Z()))
                , plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  quot^#(s(X), s(Y)) -> c_6(quot^#(min(X, Y), s(Y)))
                  , min(X, 0()) -> X
                  , min(s(X), s(Y)) -> min(X, Y)
                  , min(min(X, Y), Z()) -> min(X, plus(Y, Z()))
                  , plus(0(), Y) -> Y
                  , plus(s(X), Y) -> s(plus(X, Y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {7}->{6}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  min(X, 0()) -> X
                , min(s(X), s(Y)) -> min(X, Y)
                , min(min(X, Y), Z()) -> min(X, plus(Y, Z()))
                , plus(0(), Y) -> Y
                , plus(s(X), Y) -> s(plus(X, Y))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {1}, Uargs(s) = {1}, Uargs(min) = {1, 2},
                 Uargs(quot) = {}, Uargs(plus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(min^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(quot^#) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [2] x1 + [2] x2 + [0]
                0() = [3]
                s(x1) = [1] x1 + [2]
                min(x1, x2) = [2] x1 + [1] x2 + [1]
                Z() = [0]
                quot(x1, x2) = [0] x1 + [0] x2 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                min^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                quot^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.