Problem SK90 2.18

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.18

stdout:

MAYBE

Problem:
 sum(0()) -> 0()
 sum(s(x)) -> +(sum(x),s(x))
 +(x,0()) -> x
 +(x,s(y)) -> s(+(x,y))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.18

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.18

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  sum(0()) -> 0()
     , sum(s(x)) -> +(sum(x), s(x))
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: sum^#(0()) -> c_0()
              , 2: sum^#(s(x)) -> c_1(+^#(sum(x), s(x)))
              , 3: +^#(x, 0()) -> c_2()
              , 4: +^#(x, s(y)) -> c_3(+^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{2}                                                       [     inherited      ]
                |
                `->{4}                                                   [     inherited      ]
                    |
                    `->{3}                                               [       MAYBE        ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(sum) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(sum^#) = {},
                 Uargs(c_1) = {}, Uargs(+^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {sum^#(0()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(sum^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                sum^#(x1) = [0 2 0] x1 + [7]
                            [2 2 0]      [3]
                            [2 2 2]      [3]
                c_0() = [0]
                        [1]
                        [1]
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{4}->{3}.
           
           * Path {2}->{4}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{4}->{3}.
           
           * Path {2}->{4}->{3}: MAYBE
             -------------------------
             
             The usable rules for this path are:
             
               {  sum(0()) -> 0()
                , sum(s(x)) -> +(sum(x), s(x))
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  +^#(x, s(y)) -> c_3(+^#(x, y))
                  , sum^#(s(x)) -> c_1(+^#(sum(x), s(x)))
                  , +^#(x, 0()) -> c_2()
                  , sum(0()) -> 0()
                  , sum(s(x)) -> +(sum(x), s(x))
                  , +(x, 0()) -> x
                  , +(x, s(y)) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: sum^#(0()) -> c_0()
              , 2: sum^#(s(x)) -> c_1(+^#(sum(x), s(x)))
              , 3: +^#(x, 0()) -> c_2()
              , 4: +^#(x, s(y)) -> c_3(+^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{2}                                                       [     inherited      ]
                |
                `->{4}                                                   [     inherited      ]
                    |
                    `->{3}                                               [       MAYBE        ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(sum) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(sum^#) = {},
                 Uargs(c_1) = {}, Uargs(+^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {sum^#(0()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(sum^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                sum^#(x1) = [2 0] x1 + [7]
                            [2 2]      [7]
                c_0() = [0]
                        [1]
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{4}->{3}.
           
           * Path {2}->{4}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{4}->{3}.
           
           * Path {2}->{4}->{3}: MAYBE
             -------------------------
             
             The usable rules for this path are:
             
               {  sum(0()) -> 0()
                , sum(s(x)) -> +(sum(x), s(x))
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  +^#(x, s(y)) -> c_3(+^#(x, y))
                  , sum^#(s(x)) -> c_1(+^#(sum(x), s(x)))
                  , +^#(x, 0()) -> c_2()
                  , sum(0()) -> 0()
                  , sum(s(x)) -> +(sum(x), s(x))
                  , +(x, 0()) -> x
                  , +(x, s(y)) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: sum^#(0()) -> c_0()
              , 2: sum^#(s(x)) -> c_1(+^#(sum(x), s(x)))
              , 3: +^#(x, 0()) -> c_2()
              , 4: +^#(x, s(y)) -> c_3(+^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{2}                                                       [     inherited      ]
                |
                `->{4}                                                   [     inherited      ]
                    |
                    `->{3}                                               [       MAYBE        ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(sum) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(sum^#) = {},
                 Uargs(c_1) = {}, Uargs(+^#) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                sum(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {sum^#(0()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(sum^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                sum^#(x1) = [1] x1 + [7]
                c_0() = [1]
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{4}->{3}.
           
           * Path {2}->{4}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{4}->{3}.
           
           * Path {2}->{4}->{3}: MAYBE
             -------------------------
             
             The usable rules for this path are:
             
               {  sum(0()) -> 0()
                , sum(s(x)) -> +(sum(x), s(x))
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  +^#(x, s(y)) -> c_3(+^#(x, y))
                  , sum^#(s(x)) -> c_1(+^#(sum(x), s(x)))
                  , +^#(x, 0()) -> c_2()
                  , sum(0()) -> 0()
                  , sum(s(x)) -> +(sum(x), s(x))
                  , +(x, 0()) -> x
                  , +(x, s(y)) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.18

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.18

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  sum(0()) -> 0()
     , sum(s(x)) -> +(sum(x), s(x))
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: sum^#(0()) -> c_0()
              , 2: sum^#(s(x)) -> c_1(+^#(sum(x), s(x)))
              , 3: +^#(x, 0()) -> c_2(x)
              , 4: +^#(x, s(y)) -> c_3(+^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{2}                                                       [     inherited      ]
                |
                `->{4}                                                   [     inherited      ]
                    |
                    `->{3}                                               [       MAYBE        ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(sum) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(sum^#) = {},
                 Uargs(c_1) = {}, Uargs(+^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {sum^#(0()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(sum^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                sum^#(x1) = [0 2 0] x1 + [7]
                            [2 2 0]      [3]
                            [2 2 2]      [3]
                c_0() = [0]
                        [1]
                        [1]
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{4}->{3}.
           
           * Path {2}->{4}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{4}->{3}.
           
           * Path {2}->{4}->{3}: MAYBE
             -------------------------
             
             The usable rules for this path are:
             
               {  sum(0()) -> 0()
                , sum(s(x)) -> +(sum(x), s(x))
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  +^#(x, s(y)) -> c_3(+^#(x, y))
                  , sum^#(s(x)) -> c_1(+^#(sum(x), s(x)))
                  , +^#(x, 0()) -> c_2(x)
                  , sum(0()) -> 0()
                  , sum(s(x)) -> +(sum(x), s(x))
                  , +(x, 0()) -> x
                  , +(x, s(y)) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: sum^#(0()) -> c_0()
              , 2: sum^#(s(x)) -> c_1(+^#(sum(x), s(x)))
              , 3: +^#(x, 0()) -> c_2(x)
              , 4: +^#(x, s(y)) -> c_3(+^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{2}                                                       [     inherited      ]
                |
                `->{4}                                                   [     inherited      ]
                    |
                    `->{3}                                               [       MAYBE        ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(sum) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(sum^#) = {},
                 Uargs(c_1) = {}, Uargs(+^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {sum^#(0()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(sum^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                sum^#(x1) = [2 0] x1 + [7]
                            [2 2]      [7]
                c_0() = [0]
                        [1]
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{4}->{3}.
           
           * Path {2}->{4}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{4}->{3}.
           
           * Path {2}->{4}->{3}: MAYBE
             -------------------------
             
             The usable rules for this path are:
             
               {  sum(0()) -> 0()
                , sum(s(x)) -> +(sum(x), s(x))
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  +^#(x, s(y)) -> c_3(+^#(x, y))
                  , sum^#(s(x)) -> c_1(+^#(sum(x), s(x)))
                  , +^#(x, 0()) -> c_2(x)
                  , sum(0()) -> 0()
                  , sum(s(x)) -> +(sum(x), s(x))
                  , +(x, 0()) -> x
                  , +(x, s(y)) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: sum^#(0()) -> c_0()
              , 2: sum^#(s(x)) -> c_1(+^#(sum(x), s(x)))
              , 3: +^#(x, 0()) -> c_2(x)
              , 4: +^#(x, s(y)) -> c_3(+^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{2}                                                       [     inherited      ]
                |
                `->{4}                                                   [     inherited      ]
                    |
                    `->{3}                                               [       MAYBE        ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(sum) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(sum^#) = {},
                 Uargs(c_1) = {}, Uargs(+^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                sum(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {sum^#(0()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(sum^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                sum^#(x1) = [1] x1 + [7]
                c_0() = [1]
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{4}->{3}.
           
           * Path {2}->{4}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{4}->{3}.
           
           * Path {2}->{4}->{3}: MAYBE
             -------------------------
             
             The usable rules for this path are:
             
               {  sum(0()) -> 0()
                , sum(s(x)) -> +(sum(x), s(x))
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  +^#(x, s(y)) -> c_3(+^#(x, y))
                  , sum^#(s(x)) -> c_1(+^#(sum(x), s(x)))
                  , +^#(x, 0()) -> c_2(x)
                  , sum(0()) -> 0()
                  , sum(s(x)) -> +(sum(x), s(x))
                  , +(x, 0()) -> x
                  , +(x, s(y)) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool pair1rc

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.18

stdout:

MAYBE

We consider the following Problem:

  Strict Trs:
    {  sum(0()) -> 0()
     , sum(s(x)) -> +(sum(x), s(x))
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))}
  StartTerms: basic terms
  Strategy: none

Certificate: MAYBE

Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
  The processor is not applicable, reason is:
   Input problem is not restricted to innermost rewriting
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  sum(0()) -> 0()
     , sum(s(x)) -> +(sum(x), s(x))
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))}
  StartTerms: basic terms
  Strategy: none
  
  1) None of the processors succeeded.
     
     Details of failed attempt(s):
     -----------------------------
       1) 'dp' failed due to the following reason:
            We have computed the following dependency pairs
            
            Strict Dependency Pairs:
              {  sum^#(0()) -> c_1()
               , sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))
               , +^#(x, 0()) -> c_3(x)
               , +^#(x, s(y)) -> c_4(+^#(x, y))}
            
            We consider the following Problem:
            
              Strict DPs:
                {  sum^#(0()) -> c_1()
                 , sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))
                 , +^#(x, 0()) -> c_3(x)
                 , +^#(x, s(y)) -> c_4(+^#(x, y))}
              Strict Trs:
                {  sum(0()) -> 0()
                 , sum(s(x)) -> +(sum(x), s(x))
                 , +(x, 0()) -> x
                 , +(x, s(y)) -> s(+(x, y))}
              StartTerms: basic terms
              Strategy: none
            
            Certificate: MAYBE
            
            Application of 'Fastest':
            -------------------------
              None of the processors succeeded.
              
              Details of failed attempt(s):
              -----------------------------
                1) 'pathanalysis' failed due to the following reason:
                     We use following congruence DG for path analysis
                     
                     ->{1}                                                       [         ?          ]
                     
                     ->{2}                                                       [       MAYBE        ]
                        |
                        `->{4}                                                   [         ?          ]
                            |
                            `->{3}                                               [         ?          ]
                     
                     
                     Here rules are as follows:
                     
                       {  1: sum^#(0()) -> c_1()
                        , 2: sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))
                        , 3: +^#(x, 0()) -> c_3(x)
                        , 4: +^#(x, s(y)) -> c_4(+^#(x, y))}
                     
                     * Path {1}: ?
                       -----------
                       
                       CANNOT find proof of path {1}. Propably computation has been aborted since some other path cannot be solved.
                     
                     * Path {2}: MAYBE
                       ---------------
                       
                       We consider the following Problem:
                       
                         Strict DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                         Strict Trs:
                           {  sum(0()) -> 0()
                            , sum(s(x)) -> +(sum(x), s(x))
                            , +(x, 0()) -> x
                            , +(x, s(y)) -> s(+(x, y))}
                         StartTerms: basic terms
                         Strategy: none
                       
                       Certificate: MAYBE
                       
                       Application of 'removetails >>> ... >>> ... >>> ...':
                       -----------------------------------------------------
                         The processor is inapplicable since the strict component of the
                         input problem is not empty
                         
                         We abort the transformation and continue with the subprocessor on the problem
                         
                         Strict DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                         Strict Trs:
                           {  sum(0()) -> 0()
                            , sum(s(x)) -> +(sum(x), s(x))
                            , +(x, 0()) -> x
                            , +(x, s(y)) -> s(+(x, y))}
                         StartTerms: basic terms
                         Strategy: none
                         
                         1) The weightgap principle applies, where following rules are oriented strictly:
                            
                            Dependency Pairs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                            
                            Interpretation:
                            ---------------
                              The following argument positions are usable:
                                Uargs(sum) = {}, Uargs(s) = {1}, Uargs(+) = {1}, Uargs(sum^#) = {},
                                Uargs(c_2) = {1}, Uargs(+^#) = {1}, Uargs(c_3) = {},
                                Uargs(c_4) = {}
                              We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                              Interpretation Functions:
                               sum(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                               0() = [0]
                                     [0]
                               s(x1) = [1 0] x1 + [0]
                                       [0 0]      [0]
                               +(x1, x2) = [2 0] x1 + [0 0] x2 + [0]
                                           [0 0]      [0 0]      [0]
                               sum^#(x1) = [0 0] x1 + [3]
                                           [0 0]      [3]
                               c_1() = [0]
                                       [0]
                               c_2(x1) = [1 0] x1 + [0]
                                         [0 1]      [0]
                               +^#(x1, x2) = [2 0] x1 + [0 0] x2 + [1]
                                             [0 0]      [0 0]      [3]
                               c_3(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                               c_4(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                            
                            The strictly oriented rules are moved into the weak component.
                            
                            We consider the following Problem:
                            
                              Strict Trs:
                                {  sum(0()) -> 0()
                                 , sum(s(x)) -> +(sum(x), s(x))
                                 , +(x, 0()) -> x
                                 , +(x, s(y)) -> s(+(x, y))}
                              Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                              StartTerms: basic terms
                              Strategy: none
                            
                            Certificate: MAYBE
                            
                            Application of 'removetails >>> ... >>> ... >>> ...':
                            -----------------------------------------------------
                              The processor is inapplicable since the strict component of the
                              input problem is not empty
                              
                              We abort the transformation and continue with the subprocessor on the problem
                              
                              Strict Trs:
                                {  sum(0()) -> 0()
                                 , sum(s(x)) -> +(sum(x), s(x))
                                 , +(x, 0()) -> x
                                 , +(x, s(y)) -> s(+(x, y))}
                              Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                              StartTerms: basic terms
                              Strategy: none
                              
                              1) The weightgap principle applies, where following rules are oriented strictly:
                                 
                                 TRS Component: {sum(0()) -> 0()}
                                 
                                 Interpretation:
                                 ---------------
                                   The following argument positions are usable:
                                     Uargs(sum) = {}, Uargs(s) = {1}, Uargs(+) = {1},
                                     Uargs(sum^#) = {}, Uargs(c_2) = {1}, Uargs(+^#) = {1},
                                     Uargs(c_3) = {}, Uargs(c_4) = {}
                                   We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                                   Interpretation Functions:
                                    sum(x1) = [2 0] x1 + [0]
                                              [2 0]      [0]
                                    0() = [2]
                                          [0]
                                    s(x1) = [1 0] x1 + [0]
                                            [0 0]      [2]
                                    +(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                                [0 0]      [0 2]      [0]
                                    sum^#(x1) = [2 0] x1 + [3]
                                                [0 0]      [3]
                                    c_1() = [0]
                                            [0]
                                    c_2(x1) = [1 0] x1 + [0]
                                              [0 1]      [0]
                                    +^#(x1, x2) = [1 0] x1 + [0 0] x2 + [3]
                                                  [0 0]      [0 0]      [3]
                                    c_3(x1) = [0 0] x1 + [0]
                                              [0 0]      [0]
                                    c_4(x1) = [0 0] x1 + [0]
                                              [0 0]      [0]
                                 
                                 The strictly oriented rules are moved into the weak component.
                                 
                                 We consider the following Problem:
                                 
                                   Strict Trs:
                                     {  sum(s(x)) -> +(sum(x), s(x))
                                      , +(x, 0()) -> x
                                      , +(x, s(y)) -> s(+(x, y))}
                                   Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                                   Weak Trs: {sum(0()) -> 0()}
                                   StartTerms: basic terms
                                   Strategy: none
                                 
                                 Certificate: MAYBE
                                 
                                 Application of 'removetails >>> ... >>> ... >>> ...':
                                 -----------------------------------------------------
                                   The processor is inapplicable since the strict component of the
                                   input problem is not empty
                                   
                                   We abort the transformation and continue with the subprocessor on the problem
                                   
                                   Strict Trs:
                                     {  sum(s(x)) -> +(sum(x), s(x))
                                      , +(x, 0()) -> x
                                      , +(x, s(y)) -> s(+(x, y))}
                                   Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                                   Weak Trs: {sum(0()) -> 0()}
                                   StartTerms: basic terms
                                   Strategy: none
                                   
                                   1) The weightgap principle applies, where following rules are oriented strictly:
                                      
                                      TRS Component: {+(x, 0()) -> x}
                                      
                                      Interpretation:
                                      ---------------
                                        The following argument positions are usable:
                                          Uargs(sum) = {}, Uargs(s) = {1}, Uargs(+) = {1},
                                          Uargs(sum^#) = {}, Uargs(c_2) = {1}, Uargs(+^#) = {1},
                                          Uargs(c_3) = {}, Uargs(c_4) = {}
                                        We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                                        Interpretation Functions:
                                         sum(x1) = [0 0] x1 + [0]
                                                   [0 0]      [0]
                                         0() = [0]
                                               [0]
                                         s(x1) = [1 0] x1 + [0]
                                                 [0 0]      [0]
                                         +(x1, x2) = [2 0] x1 + [0 0] x2 + [2]
                                                     [0 2]      [0 0]      [0]
                                         sum^#(x1) = [0 0] x1 + [3]
                                                     [0 0]      [3]
                                         c_1() = [0]
                                                 [0]
                                         c_2(x1) = [1 0] x1 + [0]
                                                   [0 1]      [0]
                                         +^#(x1, x2) = [1 0] x1 + [0 0] x2 + [3]
                                                       [0 0]      [0 0]      [3]
                                         c_3(x1) = [0 0] x1 + [0]
                                                   [0 0]      [0]
                                         c_4(x1) = [0 0] x1 + [0]
                                                   [0 0]      [0]
                                      
                                      The strictly oriented rules are moved into the weak component.
                                      
                                      We consider the following Problem:
                                      
                                        Strict Trs:
                                          {  sum(s(x)) -> +(sum(x), s(x))
                                           , +(x, s(y)) -> s(+(x, y))}
                                        Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                                        Weak Trs:
                                          {  +(x, 0()) -> x
                                           , sum(0()) -> 0()}
                                        StartTerms: basic terms
                                        Strategy: none
                                      
                                      Certificate: MAYBE
                                      
                                      Application of 'removetails >>> ... >>> ... >>> ...':
                                      -----------------------------------------------------
                                        The processor is inapplicable since the strict component of
                                        the input problem is not empty
                                        
                                        We abort the transformation and continue with the subprocessor on the problem
                                        
                                        Strict Trs:
                                          {  sum(s(x)) -> +(sum(x), s(x))
                                           , +(x, s(y)) -> s(+(x, y))}
                                        Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                                        Weak Trs:
                                          {  +(x, 0()) -> x
                                           , sum(0()) -> 0()}
                                        StartTerms: basic terms
                                        Strategy: none
                                        
                                        1) The weightgap principle applies, where following rules are oriented strictly:
                                           
                                           TRS Component: {sum(s(x)) -> +(sum(x), s(x))}
                                           
                                           Interpretation:
                                           ---------------
                                             The following argument positions are usable:
                                               Uargs(sum) = {}, Uargs(s) = {1}, Uargs(+) = {1},
                                               Uargs(sum^#) = {}, Uargs(c_2) = {1},
                                               Uargs(+^#) = {1}, Uargs(c_3) = {}, Uargs(c_4) = {}
                                             We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                                             Interpretation Functions:
                                              sum(x1) = [2 0] x1 + [0]
                                                        [0 0]      [0]
                                              0() = [0]
                                                    [0]
                                              s(x1) = [1 0] x1 + [2]
                                                      [0 0]      [0]
                                              +(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                                          [0 2]      [0 0]      [0]
                                              sum^#(x1) = [2 0] x1 + [3]
                                                          [0 0]      [3]
                                              c_1() = [0]
                                                      [0]
                                              c_2(x1) = [1 0] x1 + [2]
                                                        [0 1]      [2]
                                              +^#(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                                                            [0 0]      [0 0]      [1]
                                              c_3(x1) = [0 0] x1 + [0]
                                                        [0 0]      [0]
                                              c_4(x1) = [0 0] x1 + [0]
                                                        [0 0]      [0]
                                           
                                           The strictly oriented rules are moved into the weak component.
                                           
                                           We consider the following Problem:
                                           
                                             Strict Trs: {+(x, s(y)) -> s(+(x, y))}
                                             Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                                             Weak Trs:
                                               {  sum(s(x)) -> +(sum(x), s(x))
                                                , +(x, 0()) -> x
                                                , sum(0()) -> 0()}
                                             StartTerms: basic terms
                                             Strategy: none
                                           
                                           Certificate: MAYBE
                                           
                                           Application of 'removetails >>> ... >>> ... >>> ...':
                                           -----------------------------------------------------
                                             The processor is inapplicable since the strict
                                             component of the input problem is not empty
                                             
                                             We apply the transformation 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...' on the resulting sub-problems:
                                             Sub-problem 1:
                                             --------------
                                               We consider the problem
                                               
                                               Strict Trs: {+(x, s(y)) -> s(+(x, y))}
                                               Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                                               Weak Trs:
                                                 {  sum(s(x)) -> +(sum(x), s(x))
                                                  , +(x, 0()) -> x
                                                  , sum(0()) -> 0()}
                                               StartTerms: basic terms
                                               Strategy: none
                                               
                                               We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                               
                                                 The weightgap principle does not apply
                                               
                                               We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                               
                                               Strict Trs: {+(x, s(y)) -> s(+(x, y))}
                                               Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                                               Weak Trs:
                                                 {  sum(s(x)) -> +(sum(x), s(x))
                                                  , +(x, 0()) -> x
                                                  , sum(0()) -> 0()}
                                               StartTerms: basic terms
                                               Strategy: none
                                               
                                                 We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                                 
                                                   The weightgap principle does not apply
                                                 
                                                 We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                                 
                                                 Strict Trs: {+(x, s(y)) -> s(+(x, y))}
                                                 Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                                                 Weak Trs:
                                                   {  sum(s(x)) -> +(sum(x), s(x))
                                                    , +(x, 0()) -> x
                                                    , sum(0()) -> 0()}
                                                 StartTerms: basic terms
                                                 Strategy: none
                                                 
                                                   The weightgap principle does not apply
                                             
                                             We abort the transformation and continue with the subprocessor on the problem
                                             
                                             Strict Trs: {+(x, s(y)) -> s(+(x, y))}
                                             Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                                             Weak Trs:
                                               {  sum(s(x)) -> +(sum(x), s(x))
                                                , +(x, 0()) -> x
                                                , sum(0()) -> 0()}
                                             StartTerms: basic terms
                                             Strategy: none
                                             
                                             1) None of the processors succeeded.
                                                
                                                Details of failed attempt(s):
                                                -----------------------------
                                                  1) 'empty' failed due to the following reason:
                                                       Empty strict component of the problem is NOT empty.
                                                  
                                                  2) 'Fastest' failed due to the following reason:
                                                       None of the processors succeeded.
                                                       
                                                       Details of failed attempt(s):
                                                       -----------------------------
                                                         1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                                              The input cannot be shown compatible
                                                         
                                                         2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                                              The input cannot be shown compatible
                                                         
                                                         3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                                              The input cannot be shown compatible
                                                         
                                                  
                                             
                                        
                                   
                              
                         
                     
                     * Path {2}->{4}: ?
                       ----------------
                       
                       CANNOT find proof of path {2}->{4}. Propably computation has been aborted since some other path cannot be solved.
                     
                     * Path {2}->{4}->{3}: ?
                       ---------------------
                       
                       CANNOT find proof of path {2}->{4}->{3}. Propably computation has been aborted since some other path cannot be solved.
                
                2) 'Sequentially' failed due to the following reason:
                     None of the processors succeeded.
                     
                     Details of failed attempt(s):
                     -----------------------------
                       1) 'empty' failed due to the following reason:
                            Empty strict component of the problem is NOT empty.
                       
                       2) 'Fastest' failed due to the following reason:
                            None of the processors succeeded.
                            
                            Details of failed attempt(s):
                            -----------------------------
                              1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                              2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                              3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                       
                
       
       2) 'Fastest' failed due to the following reason:
            None of the processors succeeded.
            
            Details of failed attempt(s):
            -----------------------------
              1) 'Sequentially' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'empty' failed due to the following reason:
                          Empty strict component of the problem is NOT empty.
                     
                     2) 'Fastest' failed due to the following reason:
                          None of the processors succeeded.
                          
                          Details of failed attempt(s):
                          -----------------------------
                            1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                     
              
              2) 'Fastest' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
                     2) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
              
       
  

Arrrr..

Tool pair2rc

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.18

stdout:

MAYBE

We consider the following Problem:

  Strict Trs:
    {  sum(0()) -> 0()
     , sum(s(x)) -> +(sum(x), s(x))
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))}
  StartTerms: basic terms
  Strategy: none

Certificate: MAYBE

Application of 'pair2 (timeout of 60.0 seconds)':
-------------------------------------------------
  The processor is not applicable, reason is:
   Input problem is not restricted to innermost rewriting
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  sum(0()) -> 0()
     , sum(s(x)) -> +(sum(x), s(x))
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))}
  StartTerms: basic terms
  Strategy: none
  
  1) None of the processors succeeded.
     
     Details of failed attempt(s):
     -----------------------------
       1) 'dp' failed due to the following reason:
            We have computed the following dependency pairs
            
            Strict Dependency Pairs:
              {  sum^#(0()) -> c_1()
               , sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))
               , +^#(x, 0()) -> c_3(x)
               , +^#(x, s(y)) -> c_4(+^#(x, y))}
            
            We consider the following Problem:
            
              Strict DPs:
                {  sum^#(0()) -> c_1()
                 , sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))
                 , +^#(x, 0()) -> c_3(x)
                 , +^#(x, s(y)) -> c_4(+^#(x, y))}
              Strict Trs:
                {  sum(0()) -> 0()
                 , sum(s(x)) -> +(sum(x), s(x))
                 , +(x, 0()) -> x
                 , +(x, s(y)) -> s(+(x, y))}
              StartTerms: basic terms
              Strategy: none
            
            Certificate: MAYBE
            
            Application of 'Fastest':
            -------------------------
              None of the processors succeeded.
              
              Details of failed attempt(s):
              -----------------------------
                1) 'pathanalysis' failed due to the following reason:
                     We use following congruence DG for path analysis
                     
                     ->{1}                                                       [         ?          ]
                     
                     ->{2}                                                       [       MAYBE        ]
                        |
                        `->{4}                                                   [         ?          ]
                            |
                            `->{3}                                               [         ?          ]
                     
                     
                     Here rules are as follows:
                     
                       {  1: sum^#(0()) -> c_1()
                        , 2: sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))
                        , 3: +^#(x, 0()) -> c_3(x)
                        , 4: +^#(x, s(y)) -> c_4(+^#(x, y))}
                     
                     * Path {1}: ?
                       -----------
                       
                       CANNOT find proof of path {1}. Propably computation has been aborted since some other path cannot be solved.
                     
                     * Path {2}: MAYBE
                       ---------------
                       
                       We consider the following Problem:
                       
                         Strict DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                         Strict Trs:
                           {  sum(0()) -> 0()
                            , sum(s(x)) -> +(sum(x), s(x))
                            , +(x, 0()) -> x
                            , +(x, s(y)) -> s(+(x, y))}
                         StartTerms: basic terms
                         Strategy: none
                       
                       Certificate: MAYBE
                       
                       Application of 'removetails >>> ... >>> ... >>> ...':
                       -----------------------------------------------------
                         The processor is inapplicable since the strict component of the
                         input problem is not empty
                         
                         We abort the transformation and continue with the subprocessor on the problem
                         
                         Strict DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                         Strict Trs:
                           {  sum(0()) -> 0()
                            , sum(s(x)) -> +(sum(x), s(x))
                            , +(x, 0()) -> x
                            , +(x, s(y)) -> s(+(x, y))}
                         StartTerms: basic terms
                         Strategy: none
                         
                         1) The weightgap principle applies, where following rules are oriented strictly:
                            
                            Dependency Pairs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                            
                            Interpretation:
                            ---------------
                              The following argument positions are usable:
                                Uargs(sum) = {}, Uargs(s) = {1}, Uargs(+) = {1}, Uargs(sum^#) = {},
                                Uargs(c_2) = {1}, Uargs(+^#) = {1}, Uargs(c_3) = {},
                                Uargs(c_4) = {}
                              We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                              Interpretation Functions:
                               sum(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                               0() = [0]
                                     [0]
                               s(x1) = [1 0] x1 + [0]
                                       [0 0]      [0]
                               +(x1, x2) = [2 0] x1 + [0 0] x2 + [0]
                                           [0 0]      [0 0]      [0]
                               sum^#(x1) = [0 0] x1 + [3]
                                           [0 0]      [3]
                               c_1() = [0]
                                       [0]
                               c_2(x1) = [1 0] x1 + [0]
                                         [0 1]      [0]
                               +^#(x1, x2) = [2 0] x1 + [0 0] x2 + [1]
                                             [0 0]      [0 0]      [3]
                               c_3(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                               c_4(x1) = [0 0] x1 + [0]
                                         [0 0]      [0]
                            
                            The strictly oriented rules are moved into the weak component.
                            
                            We consider the following Problem:
                            
                              Strict Trs:
                                {  sum(0()) -> 0()
                                 , sum(s(x)) -> +(sum(x), s(x))
                                 , +(x, 0()) -> x
                                 , +(x, s(y)) -> s(+(x, y))}
                              Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                              StartTerms: basic terms
                              Strategy: none
                            
                            Certificate: MAYBE
                            
                            Application of 'removetails >>> ... >>> ... >>> ...':
                            -----------------------------------------------------
                              The processor is inapplicable since the strict component of the
                              input problem is not empty
                              
                              We abort the transformation and continue with the subprocessor on the problem
                              
                              Strict Trs:
                                {  sum(0()) -> 0()
                                 , sum(s(x)) -> +(sum(x), s(x))
                                 , +(x, 0()) -> x
                                 , +(x, s(y)) -> s(+(x, y))}
                              Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                              StartTerms: basic terms
                              Strategy: none
                              
                              1) The weightgap principle applies, where following rules are oriented strictly:
                                 
                                 TRS Component: {sum(0()) -> 0()}
                                 
                                 Interpretation:
                                 ---------------
                                   The following argument positions are usable:
                                     Uargs(sum) = {}, Uargs(s) = {1}, Uargs(+) = {1},
                                     Uargs(sum^#) = {}, Uargs(c_2) = {1}, Uargs(+^#) = {1},
                                     Uargs(c_3) = {}, Uargs(c_4) = {}
                                   We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                                   Interpretation Functions:
                                    sum(x1) = [2 0] x1 + [0]
                                              [2 0]      [0]
                                    0() = [2]
                                          [0]
                                    s(x1) = [1 0] x1 + [0]
                                            [0 0]      [2]
                                    +(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                                [0 0]      [0 2]      [0]
                                    sum^#(x1) = [2 0] x1 + [3]
                                                [0 0]      [3]
                                    c_1() = [0]
                                            [0]
                                    c_2(x1) = [1 0] x1 + [0]
                                              [0 1]      [0]
                                    +^#(x1, x2) = [1 0] x1 + [0 0] x2 + [3]
                                                  [0 0]      [0 0]      [3]
                                    c_3(x1) = [0 0] x1 + [0]
                                              [0 0]      [0]
                                    c_4(x1) = [0 0] x1 + [0]
                                              [0 0]      [0]
                                 
                                 The strictly oriented rules are moved into the weak component.
                                 
                                 We consider the following Problem:
                                 
                                   Strict Trs:
                                     {  sum(s(x)) -> +(sum(x), s(x))
                                      , +(x, 0()) -> x
                                      , +(x, s(y)) -> s(+(x, y))}
                                   Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                                   Weak Trs: {sum(0()) -> 0()}
                                   StartTerms: basic terms
                                   Strategy: none
                                 
                                 Certificate: MAYBE
                                 
                                 Application of 'removetails >>> ... >>> ... >>> ...':
                                 -----------------------------------------------------
                                   The processor is inapplicable since the strict component of the
                                   input problem is not empty
                                   
                                   We abort the transformation and continue with the subprocessor on the problem
                                   
                                   Strict Trs:
                                     {  sum(s(x)) -> +(sum(x), s(x))
                                      , +(x, 0()) -> x
                                      , +(x, s(y)) -> s(+(x, y))}
                                   Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                                   Weak Trs: {sum(0()) -> 0()}
                                   StartTerms: basic terms
                                   Strategy: none
                                   
                                   1) The weightgap principle applies, where following rules are oriented strictly:
                                      
                                      TRS Component: {+(x, 0()) -> x}
                                      
                                      Interpretation:
                                      ---------------
                                        The following argument positions are usable:
                                          Uargs(sum) = {}, Uargs(s) = {1}, Uargs(+) = {1},
                                          Uargs(sum^#) = {}, Uargs(c_2) = {1}, Uargs(+^#) = {1},
                                          Uargs(c_3) = {}, Uargs(c_4) = {}
                                        We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                                        Interpretation Functions:
                                         sum(x1) = [0 0] x1 + [0]
                                                   [0 0]      [0]
                                         0() = [0]
                                               [0]
                                         s(x1) = [1 0] x1 + [0]
                                                 [0 0]      [0]
                                         +(x1, x2) = [2 0] x1 + [0 0] x2 + [2]
                                                     [0 2]      [0 0]      [0]
                                         sum^#(x1) = [0 0] x1 + [3]
                                                     [0 0]      [3]
                                         c_1() = [0]
                                                 [0]
                                         c_2(x1) = [1 0] x1 + [0]
                                                   [0 1]      [0]
                                         +^#(x1, x2) = [1 0] x1 + [0 0] x2 + [3]
                                                       [0 0]      [0 0]      [3]
                                         c_3(x1) = [0 0] x1 + [0]
                                                   [0 0]      [0]
                                         c_4(x1) = [0 0] x1 + [0]
                                                   [0 0]      [0]
                                      
                                      The strictly oriented rules are moved into the weak component.
                                      
                                      We consider the following Problem:
                                      
                                        Strict Trs:
                                          {  sum(s(x)) -> +(sum(x), s(x))
                                           , +(x, s(y)) -> s(+(x, y))}
                                        Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                                        Weak Trs:
                                          {  +(x, 0()) -> x
                                           , sum(0()) -> 0()}
                                        StartTerms: basic terms
                                        Strategy: none
                                      
                                      Certificate: MAYBE
                                      
                                      Application of 'removetails >>> ... >>> ... >>> ...':
                                      -----------------------------------------------------
                                        The processor is inapplicable since the strict component of
                                        the input problem is not empty
                                        
                                        We abort the transformation and continue with the subprocessor on the problem
                                        
                                        Strict Trs:
                                          {  sum(s(x)) -> +(sum(x), s(x))
                                           , +(x, s(y)) -> s(+(x, y))}
                                        Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                                        Weak Trs:
                                          {  +(x, 0()) -> x
                                           , sum(0()) -> 0()}
                                        StartTerms: basic terms
                                        Strategy: none
                                        
                                        1) The weightgap principle applies, where following rules are oriented strictly:
                                           
                                           TRS Component: {sum(s(x)) -> +(sum(x), s(x))}
                                           
                                           Interpretation:
                                           ---------------
                                             The following argument positions are usable:
                                               Uargs(sum) = {}, Uargs(s) = {1}, Uargs(+) = {1},
                                               Uargs(sum^#) = {}, Uargs(c_2) = {1},
                                               Uargs(+^#) = {1}, Uargs(c_3) = {}, Uargs(c_4) = {}
                                             We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                                             Interpretation Functions:
                                              sum(x1) = [2 0] x1 + [0]
                                                        [0 0]      [0]
                                              0() = [0]
                                                    [0]
                                              s(x1) = [1 0] x1 + [2]
                                                      [0 0]      [0]
                                              +(x1, x2) = [1 0] x1 + [0 0] x2 + [0]
                                                          [0 2]      [0 0]      [0]
                                              sum^#(x1) = [2 0] x1 + [3]
                                                          [0 0]      [3]
                                              c_1() = [0]
                                                      [0]
                                              c_2(x1) = [1 0] x1 + [2]
                                                        [0 1]      [2]
                                              +^#(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                                                            [0 0]      [0 0]      [1]
                                              c_3(x1) = [0 0] x1 + [0]
                                                        [0 0]      [0]
                                              c_4(x1) = [0 0] x1 + [0]
                                                        [0 0]      [0]
                                           
                                           The strictly oriented rules are moved into the weak component.
                                           
                                           We consider the following Problem:
                                           
                                             Strict Trs: {+(x, s(y)) -> s(+(x, y))}
                                             Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                                             Weak Trs:
                                               {  sum(s(x)) -> +(sum(x), s(x))
                                                , +(x, 0()) -> x
                                                , sum(0()) -> 0()}
                                             StartTerms: basic terms
                                             Strategy: none
                                           
                                           Certificate: MAYBE
                                           
                                           Application of 'removetails >>> ... >>> ... >>> ...':
                                           -----------------------------------------------------
                                             The processor is inapplicable since the strict
                                             component of the input problem is not empty
                                             
                                             We apply the transformation 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...' on the resulting sub-problems:
                                             Sub-problem 1:
                                             --------------
                                               We consider the problem
                                               
                                               Strict Trs: {+(x, s(y)) -> s(+(x, y))}
                                               Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                                               Weak Trs:
                                                 {  sum(s(x)) -> +(sum(x), s(x))
                                                  , +(x, 0()) -> x
                                                  , sum(0()) -> 0()}
                                               StartTerms: basic terms
                                               Strategy: none
                                               
                                               We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                               
                                                 The weightgap principle does not apply
                                               
                                               We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                               
                                               Strict Trs: {+(x, s(y)) -> s(+(x, y))}
                                               Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                                               Weak Trs:
                                                 {  sum(s(x)) -> +(sum(x), s(x))
                                                  , +(x, 0()) -> x
                                                  , sum(0()) -> 0()}
                                               StartTerms: basic terms
                                               Strategy: none
                                               
                                                 We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                                 
                                                   The weightgap principle does not apply
                                                 
                                                 We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                                 
                                                 Strict Trs: {+(x, s(y)) -> s(+(x, y))}
                                                 Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                                                 Weak Trs:
                                                   {  sum(s(x)) -> +(sum(x), s(x))
                                                    , +(x, 0()) -> x
                                                    , sum(0()) -> 0()}
                                                 StartTerms: basic terms
                                                 Strategy: none
                                                 
                                                   The weightgap principle does not apply
                                             
                                             We abort the transformation and continue with the subprocessor on the problem
                                             
                                             Strict Trs: {+(x, s(y)) -> s(+(x, y))}
                                             Weak DPs: {sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))}
                                             Weak Trs:
                                               {  sum(s(x)) -> +(sum(x), s(x))
                                                , +(x, 0()) -> x
                                                , sum(0()) -> 0()}
                                             StartTerms: basic terms
                                             Strategy: none
                                             
                                             1) None of the processors succeeded.
                                                
                                                Details of failed attempt(s):
                                                -----------------------------
                                                  1) 'Sequentially' failed due to the following reason:
                                                       None of the processors succeeded.
                                                       
                                                       Details of failed attempt(s):
                                                       -----------------------------
                                                         1) 'empty' failed due to the following reason:
                                                              Empty strict component of the problem is NOT empty.
                                                         
                                                         2) 'Fastest' failed due to the following reason:
                                                              None of the processors succeeded.
                                                              
                                                              Details of failed attempt(s):
                                                              -----------------------------
                                                                1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                                                     The input cannot be shown compatible
                                                                
                                                                2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                                                     The input cannot be shown compatible
                                                                
                                                                3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                                                     The input cannot be shown compatible
                                                                
                                                         
                                                  
                                                  2) 'compose (statically using 'split first congruence from CWD', multiplication)' failed due to the following reason:
                                                       Compose is inapplicable since some weak rule is size increasing
                                                       
                                                       No subproblems were generated.
                                                  
                                             
                                        
                                   
                              
                         
                     
                     * Path {2}->{4}: ?
                       ----------------
                       
                       CANNOT find proof of path {2}->{4}. Propably computation has been aborted since some other path cannot be solved.
                     
                     * Path {2}->{4}->{3}: ?
                       ---------------------
                       
                       CANNOT find proof of path {2}->{4}->{3}. Propably computation has been aborted since some other path cannot be solved.
                
                2) 'Sequentially' failed due to the following reason:
                     None of the processors succeeded.
                     
                     Details of failed attempt(s):
                     -----------------------------
                       1) 'empty' failed due to the following reason:
                            Empty strict component of the problem is NOT empty.
                       
                       2) 'Fastest' failed due to the following reason:
                            None of the processors succeeded.
                            
                            Details of failed attempt(s):
                            -----------------------------
                              1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                              2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                              3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                       
                
       
       2) 'Fastest' failed due to the following reason:
            None of the processors succeeded.
            
            Details of failed attempt(s):
            -----------------------------
              1) 'Sequentially' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'empty' failed due to the following reason:
                          Empty strict component of the problem is NOT empty.
                     
                     2) 'Fastest' failed due to the following reason:
                          None of the processors succeeded.
                          
                          Details of failed attempt(s):
                          -----------------------------
                            1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                     
              
              2) 'Fastest' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
                     2) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
              
       
  

Arrrr..

Tool pair3irc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 2.18

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  sum(0()) -> 0()
     , sum(s(x)) -> +(sum(x), s(x))
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 2.18

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  sum(0()) -> 0()
     , sum(s(x)) -> +(sum(x), s(x))
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool rc

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.18

stdout:

MAYBE

We consider the following Problem:

  Strict Trs:
    {  sum(0()) -> 0()
     , sum(s(x)) -> +(sum(x), s(x))
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))}
  StartTerms: basic terms
  Strategy: none

Certificate: MAYBE

Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'Fastest' failed due to the following reason:
         None of the processors succeeded.
         
         Details of failed attempt(s):
         -----------------------------
           1) 'Sequentially' failed due to the following reason:
                None of the processors succeeded.
                
                Details of failed attempt(s):
                -----------------------------
                  1) 'empty' failed due to the following reason:
                       Empty strict component of the problem is NOT empty.
                  
                  2) 'Fastest' failed due to the following reason:
                       None of the processors succeeded.
                       
                       Details of failed attempt(s):
                       -----------------------------
                         1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                              The input cannot be shown compatible
                         
                         2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                              The input cannot be shown compatible
                         
                         3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                              The input cannot be shown compatible
                         
                  
           
           2) 'Fastest' failed due to the following reason:
                None of the processors succeeded.
                
                Details of failed attempt(s):
                -----------------------------
                  1) 'Bounds with minimal-enrichment and initial automaton 'match' (timeout of 100.0 seconds)' failed due to the following reason:
                       match-boundness of the problem could not be verified.
                  
                  2) 'Bounds with perSymbol-enrichment and initial automaton 'match' (timeout of 5.0 seconds)' failed due to the following reason:
                       match-boundness of the problem could not be verified.
                  
           
    
    2) 'dp' failed due to the following reason:
         We have computed the following dependency pairs
         
         Strict Dependency Pairs:
           {  sum^#(0()) -> c_1()
            , sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))
            , +^#(x, 0()) -> c_3(x)
            , +^#(x, s(y)) -> c_4(+^#(x, y))}
         
         We consider the following Problem:
         
           Strict DPs:
             {  sum^#(0()) -> c_1()
              , sum^#(s(x)) -> c_2(+^#(sum(x), s(x)))
              , +^#(x, 0()) -> c_3(x)
              , +^#(x, s(y)) -> c_4(+^#(x, y))}
           Strict Trs:
             {  sum(0()) -> 0()
              , sum(s(x)) -> +(sum(x), s(x))
              , +(x, 0()) -> x
              , +(x, s(y)) -> s(+(x, y))}
           StartTerms: basic terms
           Strategy: none
         
         Certificate: MAYBE
         
         Application of 'usablerules':
         -----------------------------
           All rules are usable.
           
           No subproblems were generated.
    

Arrrr..

Tool tup3irc

Execution Time60.052174ms
Answer
TIMEOUT
InputSK90 2.18

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  sum(0()) -> 0()
     , sum(s(x)) -> +(sum(x), s(x))
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: TIMEOUT

Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..