Problem SK90 2.21

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.21

stdout:

MAYBE

Problem:
 bin(x,0()) -> s(0())
 bin(0(),s(y)) -> 0()
 bin(s(x),s(y)) -> +(bin(x,s(y)),bin(x,y))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.21

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.21

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  bin(x, 0()) -> s(0())
     , bin(0(), s(y)) -> 0()
     , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: bin^#(x, 0()) -> c_0()
              , 2: bin^#(0(), s(y)) -> c_1()
              , 3: bin^#(s(x), s(y)) -> c_2(bin^#(x, s(y)), bin^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [       MAYBE        ]
                |
                |->{1}                                                   [         NA         ]
                |
                `->{2}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(bin^#) = {},
                 Uargs(c_2) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                bin(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 3 3] x1 + [0]
                        [0 1 3]      [0]
                        [0 0 1]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                bin^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [3 3 3]      [3 3 3]      [0]
                                [3 3 3]      [3 3 3]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [0 1 0]      [0 1 0]      [0]
                              [0 0 1]      [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {bin^#(s(x), s(y)) -> c_2(bin^#(x, s(y)), bin^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {3}->{1}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(bin^#) = {},
                 Uargs(c_2) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                bin(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                bin^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [0 1 0]      [0 1 0]      [0]
                              [0 0 1]      [0 0 1]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{2}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(bin^#) = {},
                 Uargs(c_2) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                bin(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                bin^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [0 1 0]      [0 1 0]      [0]
                              [0 0 1]      [0 0 1]      [0]
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: bin^#(x, 0()) -> c_0()
              , 2: bin^#(0(), s(y)) -> c_1()
              , 3: bin^#(s(x), s(y)) -> c_2(bin^#(x, s(y)), bin^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [       MAYBE        ]
                |
                |->{1}                                                   [         NA         ]
                |
                `->{2}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(bin^#) = {},
                 Uargs(c_2) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                bin(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 3] x1 + [0]
                        [0 1]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                bin^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 1]      [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {bin^#(s(x), s(y)) -> c_2(bin^#(x, s(y)), bin^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {3}->{1}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(bin^#) = {},
                 Uargs(c_2) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                bin(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                bin^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 1]      [0 1]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{2}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(bin^#) = {},
                 Uargs(c_2) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                bin(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                bin^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 1]      [0 1]      [0]
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: bin^#(x, 0()) -> c_0()
              , 2: bin^#(0(), s(y)) -> c_1()
              , 3: bin^#(s(x), s(y)) -> c_2(bin^#(x, s(y)), bin^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [       MAYBE        ]
                |
                |->{1}                                                   [         NA         ]
                |
                `->{2}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(bin^#) = {},
                 Uargs(c_2) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                bin(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                bin^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1, x2) = [1] x1 + [1] x2 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {bin^#(s(x), s(y)) -> c_2(bin^#(x, s(y)), bin^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {3}->{1}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(bin^#) = {},
                 Uargs(c_2) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                bin(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                bin^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1, x2) = [1] x1 + [1] x2 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{2}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(bin^#) = {},
                 Uargs(c_2) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                bin(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                bin^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1, x2) = [1] x1 + [1] x2 + [0]
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.21

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.21

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  bin(x, 0()) -> s(0())
     , bin(0(), s(y)) -> 0()
     , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: bin^#(x, 0()) -> c_0()
              , 2: bin^#(0(), s(y)) -> c_1()
              , 3: bin^#(s(x), s(y)) -> c_2(bin^#(x, s(y)), bin^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [       MAYBE        ]
                |
                |->{1}                                                   [         NA         ]
                |
                `->{2}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(bin^#) = {},
                 Uargs(c_2) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                bin(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 3 3] x1 + [0]
                        [0 1 3]      [0]
                        [0 0 1]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                bin^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [3 3 3]      [3 3 3]      [0]
                                [3 3 3]      [3 3 3]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [0 1 0]      [0 1 0]      [0]
                              [0 0 1]      [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {bin^#(s(x), s(y)) -> c_2(bin^#(x, s(y)), bin^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {3}->{1}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(bin^#) = {},
                 Uargs(c_2) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                bin(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                bin^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [0 1 0]      [0 1 0]      [0]
                              [0 0 1]      [0 0 1]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{2}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(bin^#) = {},
                 Uargs(c_2) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                bin(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                bin^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [0 1 0]      [0 1 0]      [0]
                              [0 0 1]      [0 0 1]      [0]
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: bin^#(x, 0()) -> c_0()
              , 2: bin^#(0(), s(y)) -> c_1()
              , 3: bin^#(s(x), s(y)) -> c_2(bin^#(x, s(y)), bin^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [       MAYBE        ]
                |
                |->{1}                                                   [         NA         ]
                |
                `->{2}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(bin^#) = {},
                 Uargs(c_2) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                bin(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 3] x1 + [0]
                        [0 1]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                bin^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 1]      [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {bin^#(s(x), s(y)) -> c_2(bin^#(x, s(y)), bin^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {3}->{1}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(bin^#) = {},
                 Uargs(c_2) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                bin(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                bin^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 1]      [0 1]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{2}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(bin^#) = {},
                 Uargs(c_2) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                bin(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                bin^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 1]      [0 1]      [0]
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: bin^#(x, 0()) -> c_0()
              , 2: bin^#(0(), s(y)) -> c_1()
              , 3: bin^#(s(x), s(y)) -> c_2(bin^#(x, s(y)), bin^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [       MAYBE        ]
                |
                |->{1}                                                   [         NA         ]
                |
                `->{2}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(bin^#) = {},
                 Uargs(c_2) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                bin(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                bin^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1, x2) = [1] x1 + [1] x2 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {bin^#(s(x), s(y)) -> c_2(bin^#(x, s(y)), bin^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {3}->{1}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(bin^#) = {},
                 Uargs(c_2) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                bin(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                bin^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1, x2) = [1] x1 + [1] x2 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{2}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(bin^#) = {},
                 Uargs(c_2) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                bin(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                bin^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1, x2) = [1] x1 + [1] x2 + [0]
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool pair1rc

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.21

stdout:

MAYBE

We consider the following Problem:

  Strict Trs:
    {  bin(x, 0()) -> s(0())
     , bin(0(), s(y)) -> 0()
     , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
  StartTerms: basic terms
  Strategy: none

Certificate: MAYBE

Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
  The processor is not applicable, reason is:
   Input problem is not restricted to innermost rewriting
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  bin(x, 0()) -> s(0())
     , bin(0(), s(y)) -> 0()
     , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
  StartTerms: basic terms
  Strategy: none
  
  1) None of the processors succeeded.
     
     Details of failed attempt(s):
     -----------------------------
       1) 'dp' failed due to the following reason:
            We have computed the following dependency pairs
            
            Strict Dependency Pairs:
              {  bin^#(x, 0()) -> c_1()
               , bin^#(0(), s(y)) -> c_2()
               , bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
            
            We consider the following Problem:
            
              Strict DPs:
                {  bin^#(x, 0()) -> c_1()
                 , bin^#(0(), s(y)) -> c_2()
                 , bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
              Strict Trs:
                {  bin(x, 0()) -> s(0())
                 , bin(0(), s(y)) -> 0()
                 , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
              StartTerms: basic terms
              Strategy: none
            
            Certificate: MAYBE
            
            Application of 'Fastest':
            -------------------------
              None of the processors succeeded.
              
              Details of failed attempt(s):
              -----------------------------
                1) 'pathanalysis' failed due to the following reason:
                     We use following congruence DG for path analysis
                     
                     ->{3}                                                       [       MAYBE        ]
                        |
                        |->{1}                                                   [         ?          ]
                        |
                        `->{2}                                                   [         ?          ]
                     
                     
                     Here rules are as follows:
                     
                       {  1: bin^#(x, 0()) -> c_1()
                        , 2: bin^#(0(), s(y)) -> c_2()
                        , 3: bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                     
                     * Path {3}: MAYBE
                       ---------------
                       
                       We consider the following Problem:
                       
                         Strict DPs: {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                         Strict Trs:
                           {  bin(x, 0()) -> s(0())
                            , bin(0(), s(y)) -> 0()
                            , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                         StartTerms: basic terms
                         Strategy: none
                       
                       Certificate: MAYBE
                       
                       Application of 'removetails >>> ... >>> ... >>> ...':
                       -----------------------------------------------------
                         The processor is inapplicable since the strict component of the
                         input problem is not empty
                         
                         We abort the transformation and continue with the subprocessor on the problem
                         
                         Strict DPs: {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                         Strict Trs:
                           {  bin(x, 0()) -> s(0())
                            , bin(0(), s(y)) -> 0()
                            , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                         StartTerms: basic terms
                         Strategy: none
                         
                         1) The weightgap principle applies, where following rules are oriented strictly:
                            
                            TRS Component: {bin(0(), s(y)) -> 0()}
                            
                            Interpretation:
                            ---------------
                              The following argument positions are usable:
                                Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {1, 2},
                                Uargs(bin^#) = {}, Uargs(c_3) = {1, 2}
                              We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                              Interpretation Functions:
                               bin(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                                             [0 0]      [0 2]      [0]
                               0() = [0]
                                     [0]
                               s(x1) = [0 0] x1 + [0]
                                       [0 0]      [2]
                               +(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                           [0 0]      [0 0]      [0]
                               bin^#(x1, x2) = [0 0] x1 + [0 0] x2 + [3]
                                               [0 0]      [0 0]      [0]
                               c_1() = [0]
                                       [0]
                               c_2() = [0]
                                       [0]
                               c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                             [0 1]      [0 1]      [3]
                            
                            The strictly oriented rules are moved into the weak component.
                            
                            We consider the following Problem:
                            
                              Strict DPs: {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                              Strict Trs:
                                {  bin(x, 0()) -> s(0())
                                 , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                              Weak Trs: {bin(0(), s(y)) -> 0()}
                              StartTerms: basic terms
                              Strategy: none
                            
                            Certificate: MAYBE
                            
                            Application of 'removetails >>> ... >>> ... >>> ...':
                            -----------------------------------------------------
                              The processor is inapplicable since the strict component of the
                              input problem is not empty
                              
                              We abort the transformation and continue with the subprocessor on the problem
                              
                              Strict DPs: {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                              Strict Trs:
                                {  bin(x, 0()) -> s(0())
                                 , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                              Weak Trs: {bin(0(), s(y)) -> 0()}
                              StartTerms: basic terms
                              Strategy: none
                              
                              1) The weightgap principle applies, where following rules are oriented strictly:
                                 
                                 TRS Component: {bin(x, 0()) -> s(0())}
                                 
                                 Interpretation:
                                 ---------------
                                   The following argument positions are usable:
                                     Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {1, 2},
                                     Uargs(bin^#) = {}, Uargs(c_3) = {1, 2}
                                   We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                                   Interpretation Functions:
                                    bin(x1, x2) = [0 0] x1 + [0 0] x2 + [1]
                                                  [0 0]      [0 0]      [0]
                                    0() = [0]
                                          [0]
                                    s(x1) = [0 0] x1 + [0]
                                            [0 0]      [0]
                                    +(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
                                                [0 0]      [0 0]      [3]
                                    bin^#(x1, x2) = [0 0] x1 + [0 0] x2 + [3]
                                                    [0 0]      [0 0]      [0]
                                    c_1() = [0]
                                            [0]
                                    c_2() = [0]
                                            [0]
                                    c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                                                  [0 1]      [0 1]      [0]
                                 
                                 The strictly oriented rules are moved into the weak component.
                                 
                                 We consider the following Problem:
                                 
                                   Strict DPs:
                                     {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                                   Strict Trs: {bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                                   Weak Trs:
                                     {  bin(x, 0()) -> s(0())
                                      , bin(0(), s(y)) -> 0()}
                                   StartTerms: basic terms
                                   Strategy: none
                                 
                                 Certificate: MAYBE
                                 
                                 Application of 'removetails >>> ... >>> ... >>> ...':
                                 -----------------------------------------------------
                                   The processor is inapplicable since the strict component of the
                                   input problem is not empty
                                   
                                   We apply the transformation 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...' on the resulting sub-problems:
                                   Sub-problem 1:
                                   --------------
                                     We consider the problem
                                     
                                     Strict DPs:
                                       {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                                     Strict Trs: {bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                                     Weak Trs:
                                       {  bin(x, 0()) -> s(0())
                                        , bin(0(), s(y)) -> 0()}
                                     StartTerms: basic terms
                                     Strategy: none
                                     
                                     We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                     
                                       The weightgap principle does not apply
                                     
                                     We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                     
                                     Strict DPs:
                                       {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                                     Strict Trs: {bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                                     Weak Trs:
                                       {  bin(x, 0()) -> s(0())
                                        , bin(0(), s(y)) -> 0()}
                                     StartTerms: basic terms
                                     Strategy: none
                                     
                                       We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                       
                                         The weightgap principle does not apply
                                       
                                       We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                       
                                       Strict DPs:
                                         {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                                       Strict Trs: {bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                                       Weak Trs:
                                         {  bin(x, 0()) -> s(0())
                                          , bin(0(), s(y)) -> 0()}
                                       StartTerms: basic terms
                                       Strategy: none
                                       
                                         The weightgap principle does not apply
                                   
                                   We abort the transformation and continue with the subprocessor on the problem
                                   
                                   Strict DPs:
                                     {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                                   Strict Trs: {bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                                   Weak Trs:
                                     {  bin(x, 0()) -> s(0())
                                      , bin(0(), s(y)) -> 0()}
                                   StartTerms: basic terms
                                   Strategy: none
                                   
                                   1) None of the processors succeeded.
                                      
                                      Details of failed attempt(s):
                                      -----------------------------
                                        1) 'empty' failed due to the following reason:
                                             Empty strict component of the problem is NOT empty.
                                        
                                        2) 'Fastest' failed due to the following reason:
                                             None of the processors succeeded.
                                             
                                             Details of failed attempt(s):
                                             -----------------------------
                                               1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                                    The input cannot be shown compatible
                                               
                                               2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                                    The input cannot be shown compatible
                                               
                                               3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                                    The input cannot be shown compatible
                                               
                                        
                                   
                              
                         
                     
                     * Path {3}->{1}: ?
                       ----------------
                       
                       CANNOT find proof of path {3}->{1}. Propably computation has been aborted since some other path cannot be solved.
                     
                     * Path {3}->{2}: ?
                       ----------------
                       
                       CANNOT find proof of path {3}->{2}. Propably computation has been aborted since some other path cannot be solved.
                
                2) 'Sequentially' failed due to the following reason:
                     None of the processors succeeded.
                     
                     Details of failed attempt(s):
                     -----------------------------
                       1) 'empty' failed due to the following reason:
                            Empty strict component of the problem is NOT empty.
                       
                       2) 'Fastest' failed due to the following reason:
                            None of the processors succeeded.
                            
                            Details of failed attempt(s):
                            -----------------------------
                              1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                              2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                              3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                       
                
       
       2) 'Fastest' failed due to the following reason:
            None of the processors succeeded.
            
            Details of failed attempt(s):
            -----------------------------
              1) 'Sequentially' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'empty' failed due to the following reason:
                          Empty strict component of the problem is NOT empty.
                     
                     2) 'Fastest' failed due to the following reason:
                          None of the processors succeeded.
                          
                          Details of failed attempt(s):
                          -----------------------------
                            1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                     
              
              2) 'Fastest' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
                     2) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
              
       
  

Arrrr..

Tool pair2rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 2.21

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  bin(x, 0()) -> s(0())
     , bin(0(), s(y)) -> 0()
     , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair2 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3irc

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.21

stdout:

MAYBE

We consider the following Problem:

  Strict Trs:
    {  bin(x, 0()) -> s(0())
     , bin(0(), s(y)) -> 0()
     , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: MAYBE

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  The input problem contains no overlaps that give rise to inapplicable rules.
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  bin(x, 0()) -> s(0())
     , bin(0(), s(y)) -> 0()
     , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
  StartTerms: basic terms
  Strategy: innermost
  
  1) None of the processors succeeded.
     
     Details of failed attempt(s):
     -----------------------------
       1) 'dp' failed due to the following reason:
            We have computed the following dependency pairs
            
            Strict Dependency Pairs:
              {  bin^#(x, 0()) -> c_1()
               , bin^#(0(), s(y)) -> c_2()
               , bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
            
            We consider the following Problem:
            
              Strict DPs:
                {  bin^#(x, 0()) -> c_1()
                 , bin^#(0(), s(y)) -> c_2()
                 , bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
              Strict Trs:
                {  bin(x, 0()) -> s(0())
                 , bin(0(), s(y)) -> 0()
                 , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: MAYBE
            
            Application of 'Fastest':
            -------------------------
              None of the processors succeeded.
              
              Details of failed attempt(s):
              -----------------------------
                1) 'compose (statically using 'split all congruence from CWD except leafs', multiplication)' failed due to the following reason:
                     Compose is inapplicable since some strict rule is size increasing
                     
                     We abort the transformation and continue with the subprocessor on the problem
                     
                     Strict DPs:
                       {  bin^#(x, 0()) -> c_1()
                        , bin^#(0(), s(y)) -> c_2()
                        , bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                     Strict Trs:
                       {  bin(x, 0()) -> s(0())
                        , bin(0(), s(y)) -> 0()
                        , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                     StartTerms: basic terms
                     Strategy: innermost
                     
                     1) The processor is inapplicable since the strict component of the
                        input problem is not empty
                        
                        We abort the transformation and continue with the subprocessor on the problem
                        
                        Strict DPs:
                          {  bin^#(x, 0()) -> c_1()
                           , bin^#(0(), s(y)) -> c_2()
                           , bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                        Strict Trs:
                          {  bin(x, 0()) -> s(0())
                           , bin(0(), s(y)) -> 0()
                           , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                        StartTerms: basic terms
                        Strategy: innermost
                        
                        1) The weightgap principle applies, where following rules are oriented strictly:
                           
                           Dependency Pairs:
                             {  bin^#(x, 0()) -> c_1()
                              , bin^#(0(), s(y)) -> c_2()}
                           
                           Interpretation:
                           ---------------
                             The following argument positions are usable:
                               Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {1, 2},
                               Uargs(bin^#) = {}, Uargs(c_3) = {1, 2}
                             We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                             Interpretation Functions:
                              bin(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                            [0 0]      [0 0]      [0]
                              0() = [0]
                                    [0]
                              s(x1) = [0 0] x1 + [0]
                                      [0 0]      [0]
                              +(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                          [0 0]      [0 0]      [3]
                              bin^#(x1, x2) = [0 0] x1 + [0 0] x2 + [3]
                                              [0 0]      [0 0]      [0]
                              c_1() = [0]
                                      [0]
                              c_2() = [0]
                                      [0]
                              c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                                            [0 1]      [0 1]      [0]
                           
                           The strictly oriented rules are moved into the weak component.
                           
                           We consider the following Problem:
                           
                             Strict DPs: {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                             Strict Trs:
                               {  bin(x, 0()) -> s(0())
                                , bin(0(), s(y)) -> 0()
                                , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                             Weak DPs:
                               {  bin^#(x, 0()) -> c_1()
                                , bin^#(0(), s(y)) -> c_2()}
                             StartTerms: basic terms
                             Strategy: innermost
                           
                           Certificate: MAYBE
                           
                           Application of 'removetails >>> ... >>> ... >>> ...':
                           -----------------------------------------------------
                             The processor is inapplicable since the strict component of the
                             input problem is not empty
                             
                             We abort the transformation and continue with the subprocessor on the problem
                             
                             Strict DPs: {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                             Strict Trs:
                               {  bin(x, 0()) -> s(0())
                                , bin(0(), s(y)) -> 0()
                                , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                             Weak DPs:
                               {  bin^#(x, 0()) -> c_1()
                                , bin^#(0(), s(y)) -> c_2()}
                             StartTerms: basic terms
                             Strategy: innermost
                             
                             1) The weightgap principle applies, where following rules are oriented strictly:
                                
                                TRS Component:
                                  {  bin(x, 0()) -> s(0())
                                   , bin(0(), s(y)) -> 0()}
                                
                                Interpretation:
                                ---------------
                                  The following argument positions are usable:
                                    Uargs(bin) = {}, Uargs(s) = {}, Uargs(+) = {1, 2},
                                    Uargs(bin^#) = {}, Uargs(c_3) = {1, 2}
                                  We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
                                  Interpretation Functions:
                                   bin(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                                                 [0 0]      [0 0]      [0]
                                   0() = [0]
                                         [0]
                                   s(x1) = [0 0] x1 + [0]
                                           [0 0]      [0]
                                   +(x1, x2) = [1 0] x1 + [1 0] x2 + [3]
                                               [0 0]      [0 0]      [0]
                                   bin^#(x1, x2) = [0 0] x1 + [0 0] x2 + [3]
                                                   [0 0]      [0 0]      [0]
                                   c_1() = [1]
                                           [0]
                                   c_2() = [1]
                                           [0]
                                   c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [2]
                                                 [0 1]      [0 1]      [0]
                                
                                The strictly oriented rules are moved into the weak component.
                                
                                We consider the following Problem:
                                
                                  Strict DPs:
                                    {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                                  Strict Trs: {bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                                  Weak DPs:
                                    {  bin^#(x, 0()) -> c_1()
                                     , bin^#(0(), s(y)) -> c_2()}
                                  Weak Trs:
                                    {  bin(x, 0()) -> s(0())
                                     , bin(0(), s(y)) -> 0()}
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: MAYBE
                                
                                Application of 'removetails >>> ... >>> ... >>> ...':
                                -----------------------------------------------------
                                  The processor is inapplicable since the strict component of the
                                  input problem is not empty
                                  
                                  We apply the transformation 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...' on the resulting sub-problems:
                                  Sub-problem 1:
                                  --------------
                                    We consider the problem
                                    
                                    Strict DPs:
                                      {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                                    Strict Trs: {bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                                    Weak DPs:
                                      {  bin^#(x, 0()) -> c_1()
                                       , bin^#(0(), s(y)) -> c_2()}
                                    Weak Trs:
                                      {  bin(x, 0()) -> s(0())
                                       , bin(0(), s(y)) -> 0()}
                                    StartTerms: basic terms
                                    Strategy: innermost
                                    
                                    We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                    
                                      The weightgap principle does not apply
                                    
                                    We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                    
                                    Strict DPs:
                                      {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                                    Strict Trs: {bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                                    Weak DPs:
                                      {  bin^#(x, 0()) -> c_1()
                                       , bin^#(0(), s(y)) -> c_2()}
                                    Weak Trs:
                                      {  bin(x, 0()) -> s(0())
                                       , bin(0(), s(y)) -> 0()}
                                    StartTerms: basic terms
                                    Strategy: innermost
                                    
                                      We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                      
                                        The weightgap principle does not apply
                                      
                                      We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                      
                                      Strict DPs:
                                        {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                                      Strict Trs: {bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                                      Weak DPs:
                                        {  bin^#(x, 0()) -> c_1()
                                         , bin^#(0(), s(y)) -> c_2()}
                                      Weak Trs:
                                        {  bin(x, 0()) -> s(0())
                                         , bin(0(), s(y)) -> 0()}
                                      StartTerms: basic terms
                                      Strategy: innermost
                                      
                                        The weightgap principle does not apply
                                  
                                  We abort the transformation and continue with the subprocessor on the problem
                                  
                                  Strict DPs:
                                    {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                                  Strict Trs: {bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                                  Weak DPs:
                                    {  bin^#(x, 0()) -> c_1()
                                     , bin^#(0(), s(y)) -> c_2()}
                                  Weak Trs:
                                    {  bin(x, 0()) -> s(0())
                                     , bin(0(), s(y)) -> 0()}
                                  StartTerms: basic terms
                                  Strategy: innermost
                                  
                                  1) None of the processors succeeded.
                                     
                                     Details of failed attempt(s):
                                     -----------------------------
                                       1) 'empty' failed due to the following reason:
                                            Empty strict component of the problem is NOT empty.
                                       
                                       2) 'Fastest' failed due to the following reason:
                                            None of the processors succeeded.
                                            
                                            Details of failed attempt(s):
                                            -----------------------------
                                              1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                                   The input cannot be shown compatible
                                              
                                              2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                                   The input cannot be shown compatible
                                              
                                              3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                                   The input cannot be shown compatible
                                              
                                       
                                  
                             
                        
                     
                
                2) 'Sequentially' failed due to the following reason:
                     None of the processors succeeded.
                     
                     Details of failed attempt(s):
                     -----------------------------
                       1) 'empty' failed due to the following reason:
                            Empty strict component of the problem is NOT empty.
                       
                       2) 'Fastest' failed due to the following reason:
                            None of the processors succeeded.
                            
                            Details of failed attempt(s):
                            -----------------------------
                              1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                              2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                              3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                       
                
       
       2) 'Fastest' failed due to the following reason:
            None of the processors succeeded.
            
            Details of failed attempt(s):
            -----------------------------
              1) 'Sequentially' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'empty' failed due to the following reason:
                          Empty strict component of the problem is NOT empty.
                     
                     2) 'Fastest' failed due to the following reason:
                          None of the processors succeeded.
                          
                          Details of failed attempt(s):
                          -----------------------------
                            1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                     
              
              2) 'Fastest' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
                     2) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
              
       
  

Arrrr..

Tool pair3rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 2.21

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  bin(x, 0()) -> s(0())
     , bin(0(), s(y)) -> 0()
     , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 2.21

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  bin(x, 0()) -> s(0())
     , bin(0(), s(y)) -> 0()
     , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool tup3irc

Execution Time32.333813ms
Answer
MAYBE
InputSK90 2.21

stdout:

MAYBE

We consider the following Problem:

  Strict Trs:
    {  bin(x, 0()) -> s(0())
     , bin(0(), s(y)) -> 0()
     , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: MAYBE

Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
  The input problem contains no overlaps that give rise to inapplicable rules.
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  bin(x, 0()) -> s(0())
     , bin(0(), s(y)) -> 0()
     , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
  StartTerms: basic terms
  Strategy: innermost
  
  1) None of the processors succeeded.
     
     Details of failed attempt(s):
     -----------------------------
       1) 'dp' failed due to the following reason:
            We have computed the following dependency pairs
            
            Strict Dependency Pairs:
              {  bin^#(x, 0()) -> c_1()
               , bin^#(0(), s(y)) -> c_2()
               , bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
            
            We consider the following Problem:
            
              Strict DPs:
                {  bin^#(x, 0()) -> c_1()
                 , bin^#(0(), s(y)) -> c_2()
                 , bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
              Weak Trs:
                {  bin(x, 0()) -> s(0())
                 , bin(0(), s(y)) -> 0()
                 , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: MAYBE
            
            Application of 'Fastest':
            -------------------------
              None of the processors succeeded.
              
              Details of failed attempt(s):
              -----------------------------
                1) 'compose (statically using 'split all congruence from CWD except leafs', multiplication)' failed due to the following reason:
                     Compose is inapplicable since some weak rule is size increasing
                     
                     We abort the transformation and continue with the subprocessor on the problem
                     
                     Strict DPs:
                       {  bin^#(x, 0()) -> c_1()
                        , bin^#(0(), s(y)) -> c_2()
                        , bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                     Weak Trs:
                       {  bin(x, 0()) -> s(0())
                        , bin(0(), s(y)) -> 0()
                        , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                     StartTerms: basic terms
                     Strategy: innermost
                     
                     1) We consider the the dependency-graph
                        
                          1: bin^#(x, 0()) -> c_1()
                          
                          2: bin^#(0(), s(y)) -> c_2()
                          
                          3: bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))
                               --> bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y)): 3
                               --> bin^#(0(), s(y)) -> c_2(): 2
                               --> bin^#(x, 0()) -> c_1(): 1
                          
                        
                        together with the congruence-graph
                        
                          ->{3}
                             |
                             |->{1}                                                   Noncyclic, trivial, SCC
                             |
                             `->{2}                                                   Noncyclic, trivial, SCC
                          
                          
                          Here rules are as follows:
                          
                            {  1: bin^#(x, 0()) -> c_1()
                             , 2: bin^#(0(), s(y)) -> c_2()
                             , 3: bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                        
                        The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                        
                          {  2: bin^#(0(), s(y)) -> c_2()
                           , 1: bin^#(x, 0()) -> c_1()}
                        
                        We consider the following Problem:
                        
                          Strict DPs: {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                          Weak Trs:
                            {  bin(x, 0()) -> s(0())
                             , bin(0(), s(y)) -> 0()
                             , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: MAYBE
                        
                        Application of 'simpDPRHS >>> ...':
                        -----------------------------------
                          No rule was simplified
                          
                          We abort the transformation and continue with the subprocessor on the problem
                          
                          Strict DPs: {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                          Weak Trs:
                            {  bin(x, 0()) -> s(0())
                             , bin(0(), s(y)) -> 0()
                             , bin(s(x), s(y)) -> +(bin(x, s(y)), bin(x, y))}
                          StartTerms: basic terms
                          Strategy: innermost
                          
                          1) No rule is usable.
                             
                             We consider the following Problem:
                             
                               Strict DPs: {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                               StartTerms: basic terms
                               Strategy: innermost
                             
                             Certificate: MAYBE
                             
                             Application of 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...':
                             --------------------------------------------------------------------------------
                               We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                               
                                 The weightgap principle does not apply
                               
                               We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                               
                               Strict DPs: {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                               StartTerms: basic terms
                               Strategy: innermost
                               
                                 We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                 
                                   The weightgap principle does not apply
                                 
                                 We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                 
                                 Strict DPs: {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                                 StartTerms: basic terms
                                 Strategy: innermost
                                 
                                   The weightgap principle does not apply
                               
                               We abort the transformation and continue with the subprocessor on the problem
                               
                               Strict DPs: {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                               StartTerms: basic terms
                               Strategy: innermost
                               
                               1) No dependency-pair could be removed
                                  
                                  We apply the transformation 'weightgap of dimension Nat 2, maximal degree 1, cbits 4 <> ...' on the resulting sub-problems:
                                  Sub-problem 1:
                                  --------------
                                    We consider the problem
                                    
                                    Strict DPs:
                                      {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                                    StartTerms: basic terms
                                    Strategy: innermost
                                    
                                    We fail transforming the problem using 'weightgap of dimension Nat 2, maximal degree 1, cbits 4'
                                    
                                      The weightgap principle does not apply
                                    
                                    We try instead 'weightgap of dimension Nat 3, maximal degree 3, cbits 4 <> ...' on the problem
                                    
                                    Strict DPs:
                                      {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                                    StartTerms: basic terms
                                    Strategy: innermost
                                    
                                      We fail transforming the problem using 'weightgap of dimension Nat 3, maximal degree 3, cbits 4'
                                      
                                        The weightgap principle does not apply
                                      
                                      We try instead 'weightgap of dimension Nat 4, maximal degree 3, cbits 4' on the problem
                                      
                                      Strict DPs:
                                        {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                                      StartTerms: basic terms
                                      Strategy: innermost
                                      
                                        The weightgap principle does not apply
                                  
                                  We abort the transformation and continue with the subprocessor on the problem
                                  
                                  Strict DPs:
                                    {bin^#(s(x), s(y)) -> c_3(bin^#(x, s(y)), bin^#(x, y))}
                                  StartTerms: basic terms
                                  Strategy: innermost
                                  
                                  1) None of the processors succeeded.
                                     
                                     Details of failed attempt(s):
                                     -----------------------------
                                       1) 'empty' failed due to the following reason:
                                            Empty strict component of the problem is NOT empty.
                                       
                                       2) 'Fastest' failed due to the following reason:
                                            None of the processors succeeded.
                                            
                                            Details of failed attempt(s):
                                            -----------------------------
                                              1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                                   The input cannot be shown compatible
                                              
                                              2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                                   The input cannot be shown compatible
                                              
                                              3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                                   The input cannot be shown compatible
                                              
                                       
                                  
                               
                          
                     
                
                2) 'Sequentially' failed due to the following reason:
                     None of the processors succeeded.
                     
                     Details of failed attempt(s):
                     -----------------------------
                       1) 'empty' failed due to the following reason:
                            Empty strict component of the problem is NOT empty.
                       
                       2) 'Fastest' failed due to the following reason:
                            None of the processors succeeded.
                            
                            Details of failed attempt(s):
                            -----------------------------
                              1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                              2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                              3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                   The input cannot be shown compatible
                              
                       
                
       
       2) 'Fastest' failed due to the following reason:
            None of the processors succeeded.
            
            Details of failed attempt(s):
            -----------------------------
              1) 'Sequentially' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'empty' failed due to the following reason:
                          Empty strict component of the problem is NOT empty.
                     
                     2) 'Fastest' failed due to the following reason:
                          None of the processors succeeded.
                          
                          Details of failed attempt(s):
                          -----------------------------
                            1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                            3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                                 The input cannot be shown compatible
                            
                     
              
              2) 'Fastest' failed due to the following reason:
                   None of the processors succeeded.
                   
                   Details of failed attempt(s):
                   -----------------------------
                     1) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
                     2) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
                          match-boundness of the problem could not be verified.
                     
              
       
  

Arrrr..