Problem SK90 2.23

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.23

stdout:

MAYBE

Problem:
 fac(0()) -> 1()
 fac(s(x)) -> *(s(x),fac(x))
 floop(0(),y) -> y
 floop(s(x),y) -> floop(x,*(s(x),y))
 *(x,0()) -> 0()
 *(x,s(y)) -> +(*(x,y),x)
 +(x,0()) -> x
 +(x,s(y)) -> s(+(x,y))
 1() -> s(0())
 fac(0()) -> s(0())

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.23

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.23

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  fac(0()) -> 1()
     , fac(s(x)) -> *(s(x), fac(x))
     , floop(0(), y) -> y
     , floop(s(x), y) -> floop(x, *(s(x), y))
     , *(x, 0()) -> 0()
     , *(x, s(y)) -> +(*(x, y), x)
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))
     , 1() -> s(0())
     , fac(0()) -> s(0())}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fac^#(0()) -> c_0(1^#())
              , 2: fac^#(s(x)) -> c_1(*^#(s(x), fac(x)))
              , 3: floop^#(0(), y) -> c_2()
              , 4: floop^#(s(x), y) -> c_3(floop^#(x, *(s(x), y)))
              , 5: *^#(x, 0()) -> c_4()
              , 6: *^#(x, s(y)) -> c_5(+^#(*(x, y), x))
              , 7: +^#(x, 0()) -> c_6()
              , 8: +^#(x, s(y)) -> c_7(+^#(x, y))
              , 9: 1^#() -> c_8()
              , 10: fac^#(0()) -> c_9()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [     inherited      ]
                |
                |->{5}                                                   [       MAYBE        ]
                |
                `->{6}                                                   [     inherited      ]
                    |
                    |->{7}                                               [         NA         ]
                    |
                    `->{8}                                               [     inherited      ]
                        |
                        `->{7}                                           [         NA         ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
                |
                `->{9}                                                   [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(floop) = {},
                 Uargs(+) = {}, Uargs(fac^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(*^#) = {}, Uargs(floop^#) = {}, Uargs(c_3) = {},
                 Uargs(c_5) = {}, Uargs(+^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                1() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                *(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                floop(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                fac^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                1^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                *^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                floop^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {fac^#(0()) -> c_0(1^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fac^#) = {}, Uargs(c_0) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                fac^#(x1) = [0 2 2] x1 + [7]
                            [2 2 0]      [7]
                            [0 0 0]      [7]
                c_0(x1) = [2 2 0] x1 + [1]
                          [0 0 0]      [7]
                          [2 0 0]      [3]
                1^#() = [2]
                        [2]
                        [0]
           
           * Path {1}->{9}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(floop) = {},
                 Uargs(+) = {}, Uargs(fac^#) = {}, Uargs(c_0) = {1},
                 Uargs(c_1) = {}, Uargs(*^#) = {}, Uargs(floop^#) = {},
                 Uargs(c_3) = {}, Uargs(c_5) = {}, Uargs(+^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                1() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                *(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                floop(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                fac^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                1^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                *^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                floop^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {1^#() -> c_8()}
               Weak Rules: {fac^#(0()) -> c_0(1^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fac^#) = {}, Uargs(c_0) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [6]
                      [2]
                fac^#(x1) = [2 0 2] x1 + [7]
                            [0 2 0]      [3]
                            [2 0 0]      [7]
                c_0(x1) = [2 2 0] x1 + [2]
                          [2 2 2]      [3]
                          [2 2 0]      [3]
                1^#() = [2]
                        [2]
                        [2]
                c_8() = [1]
                        [0]
                        [0]
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{6}->{8}->{7}.
           
           * Path {2}->{5}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  fac(0()) -> 1()
                , fac(s(x)) -> *(s(x), fac(x))
                , fac(0()) -> s(0())
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , 1() -> s(0())
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  fac^#(s(x)) -> c_1(*^#(s(x), fac(x)))
                  , *^#(x, 0()) -> c_4()
                  , fac(0()) -> 1()
                  , fac(s(x)) -> *(s(x), fac(x))
                  , fac(0()) -> s(0())
                  , *(x, 0()) -> 0()
                  , *(x, s(y)) -> +(*(x, y), x)
                  , 1() -> s(0())
                  , +(x, 0()) -> x
                  , +(x, s(y)) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2}->{6}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{6}->{8}->{7}.
           
           * Path {2}->{6}->{7}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  fac(0()) -> 1()
                , fac(s(x)) -> *(s(x), fac(x))
                , fac(0()) -> s(0())
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , 1() -> s(0())
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{6}->{8}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {2}->{6}->{8}->{7}.
           
           * Path {2}->{6}->{8}->{7}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  fac(0()) -> 1()
                , fac(s(x)) -> *(s(x), fac(x))
                , fac(0()) -> s(0())
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , 1() -> s(0())
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{3}.
           
           * Path {4}->{3}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(floop) = {},
                 Uargs(+) = {}, Uargs(fac^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(*^#) = {}, Uargs(floop^#) = {}, Uargs(c_3) = {},
                 Uargs(c_5) = {}, Uargs(+^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                1() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                *(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                floop(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                fac^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                1^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                *^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                floop^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {fac^#(0()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fac^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                fac^#(x1) = [0 2 0] x1 + [7]
                            [2 2 0]      [3]
                            [2 2 2]      [3]
                c_9() = [0]
                        [1]
                        [1]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fac^#(0()) -> c_0(1^#())
              , 2: fac^#(s(x)) -> c_1(*^#(s(x), fac(x)))
              , 3: floop^#(0(), y) -> c_2()
              , 4: floop^#(s(x), y) -> c_3(floop^#(x, *(s(x), y)))
              , 5: *^#(x, 0()) -> c_4()
              , 6: *^#(x, s(y)) -> c_5(+^#(*(x, y), x))
              , 7: +^#(x, 0()) -> c_6()
              , 8: +^#(x, s(y)) -> c_7(+^#(x, y))
              , 9: 1^#() -> c_8()
              , 10: fac^#(0()) -> c_9()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [     inherited      ]
                |
                |->{5}                                                   [       MAYBE        ]
                |
                `->{6}                                                   [     inherited      ]
                    |
                    |->{7}                                               [         NA         ]
                    |
                    `->{8}                                               [     inherited      ]
                        |
                        `->{7}                                           [         NA         ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
                |
                `->{9}                                                   [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(floop) = {},
                 Uargs(+) = {}, Uargs(fac^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(*^#) = {}, Uargs(floop^#) = {}, Uargs(c_3) = {},
                 Uargs(c_5) = {}, Uargs(+^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                0() = [0]
                      [0]
                1() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                floop(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                fac^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                1^#() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                *^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                floop^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {fac^#(0()) -> c_0(1^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fac^#) = {}, Uargs(c_0) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                fac^#(x1) = [2 2] x1 + [7]
                            [2 0]      [7]
                c_0(x1) = [0 2] x1 + [3]
                          [0 2]      [3]
                1^#() = [0]
                        [2]
           
           * Path {1}->{9}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(floop) = {},
                 Uargs(+) = {}, Uargs(fac^#) = {}, Uargs(c_0) = {1},
                 Uargs(c_1) = {}, Uargs(*^#) = {}, Uargs(floop^#) = {},
                 Uargs(c_3) = {}, Uargs(c_5) = {}, Uargs(+^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                0() = [0]
                      [0]
                1() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                floop(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                fac^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                1^#() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                *^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                floop^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {1^#() -> c_8()}
               Weak Rules: {fac^#(0()) -> c_0(1^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fac^#) = {}, Uargs(c_0) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                fac^#(x1) = [0 0] x1 + [7]
                            [1 2]      [7]
                c_0(x1) = [2 0] x1 + [2]
                          [2 2]      [3]
                1^#() = [2]
                        [2]
                c_8() = [1]
                        [0]
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{6}->{8}->{7}.
           
           * Path {2}->{5}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  fac(0()) -> 1()
                , fac(s(x)) -> *(s(x), fac(x))
                , fac(0()) -> s(0())
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , 1() -> s(0())
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  fac^#(s(x)) -> c_1(*^#(s(x), fac(x)))
                  , *^#(x, 0()) -> c_4()
                  , fac(0()) -> 1()
                  , fac(s(x)) -> *(s(x), fac(x))
                  , fac(0()) -> s(0())
                  , *(x, 0()) -> 0()
                  , *(x, s(y)) -> +(*(x, y), x)
                  , 1() -> s(0())
                  , +(x, 0()) -> x
                  , +(x, s(y)) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2}->{6}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{6}->{8}->{7}.
           
           * Path {2}->{6}->{7}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  fac(0()) -> 1()
                , fac(s(x)) -> *(s(x), fac(x))
                , fac(0()) -> s(0())
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , 1() -> s(0())
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{6}->{8}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {2}->{6}->{8}->{7}.
           
           * Path {2}->{6}->{8}->{7}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  fac(0()) -> 1()
                , fac(s(x)) -> *(s(x), fac(x))
                , fac(0()) -> s(0())
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , 1() -> s(0())
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{3}.
           
           * Path {4}->{3}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(floop) = {},
                 Uargs(+) = {}, Uargs(fac^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(*^#) = {}, Uargs(floop^#) = {}, Uargs(c_3) = {},
                 Uargs(c_5) = {}, Uargs(+^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                0() = [0]
                      [0]
                1() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                floop(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                fac^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                1^#() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                *^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                floop^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {fac^#(0()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fac^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                fac^#(x1) = [2 0] x1 + [7]
                            [2 2]      [7]
                c_9() = [0]
                        [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fac^#(0()) -> c_0(1^#())
              , 2: fac^#(s(x)) -> c_1(*^#(s(x), fac(x)))
              , 3: floop^#(0(), y) -> c_2()
              , 4: floop^#(s(x), y) -> c_3(floop^#(x, *(s(x), y)))
              , 5: *^#(x, 0()) -> c_4()
              , 6: *^#(x, s(y)) -> c_5(+^#(*(x, y), x))
              , 7: +^#(x, 0()) -> c_6()
              , 8: +^#(x, s(y)) -> c_7(+^#(x, y))
              , 9: 1^#() -> c_8()
              , 10: fac^#(0()) -> c_9()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                `->{3}                                                   [       MAYBE        ]
             
             ->{2}                                                       [     inherited      ]
                |
                |->{5}                                                   [         NA         ]
                |
                `->{6}                                                   [     inherited      ]
                    |
                    |->{7}                                               [         NA         ]
                    |
                    `->{8}                                               [     inherited      ]
                        |
                        `->{7}                                           [         NA         ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
                |
                `->{9}                                                   [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(floop) = {},
                 Uargs(+) = {}, Uargs(fac^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(*^#) = {}, Uargs(floop^#) = {}, Uargs(c_3) = {},
                 Uargs(c_5) = {}, Uargs(+^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0] x1 + [0]
                0() = [0]
                1() = [0]
                s(x1) = [0] x1 + [0]
                *(x1, x2) = [0] x1 + [0] x2 + [0]
                floop(x1, x2) = [0] x1 + [0] x2 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                fac^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                1^#() = [0]
                c_1(x1) = [0] x1 + [0]
                *^#(x1, x2) = [0] x1 + [0] x2 + [0]
                floop^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {fac^#(0()) -> c_0(1^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fac^#) = {}, Uargs(c_0) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                fac^#(x1) = [2] x1 + [5]
                c_0(x1) = [2] x1 + [3]
                1^#() = [2]
           
           * Path {1}->{9}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(floop) = {},
                 Uargs(+) = {}, Uargs(fac^#) = {}, Uargs(c_0) = {1},
                 Uargs(c_1) = {}, Uargs(*^#) = {}, Uargs(floop^#) = {},
                 Uargs(c_3) = {}, Uargs(c_5) = {}, Uargs(+^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0] x1 + [0]
                0() = [0]
                1() = [0]
                s(x1) = [0] x1 + [0]
                *(x1, x2) = [0] x1 + [0] x2 + [0]
                floop(x1, x2) = [0] x1 + [0] x2 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                fac^#(x1) = [0] x1 + [0]
                c_0(x1) = [1] x1 + [0]
                1^#() = [0]
                c_1(x1) = [0] x1 + [0]
                *^#(x1, x2) = [0] x1 + [0] x2 + [0]
                floop^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {1^#() -> c_8()}
               Weak Rules: {fac^#(0()) -> c_0(1^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fac^#) = {}, Uargs(c_0) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                fac^#(x1) = [0] x1 + [6]
                c_0(x1) = [2] x1 + [2]
                1^#() = [2]
                c_8() = [1]
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{6}->{8}->{7}.
           
           * Path {2}->{5}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  fac(0()) -> 1()
                , fac(s(x)) -> *(s(x), fac(x))
                , fac(0()) -> s(0())
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , 1() -> s(0())
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{6}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{6}->{8}->{7}.
           
           * Path {2}->{6}->{7}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  fac(0()) -> 1()
                , fac(s(x)) -> *(s(x), fac(x))
                , fac(0()) -> s(0())
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , 1() -> s(0())
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{6}->{8}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {2}->{6}->{8}->{7}.
           
           * Path {2}->{6}->{8}->{7}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  fac(0()) -> 1()
                , fac(s(x)) -> *(s(x), fac(x))
                , fac(0()) -> s(0())
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , 1() -> s(0())
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{3}.
           
           * Path {4}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  floop^#(s(x), y) -> c_3(floop^#(x, *(s(x), y)))
                  , floop^#(0(), y) -> c_2()
                  , *(x, 0()) -> 0()
                  , *(x, s(y)) -> +(*(x, y), x)
                  , +(x, 0()) -> x
                  , +(x, s(y)) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(floop) = {},
                 Uargs(+) = {}, Uargs(fac^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(*^#) = {}, Uargs(floop^#) = {}, Uargs(c_3) = {},
                 Uargs(c_5) = {}, Uargs(+^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0] x1 + [0]
                0() = [0]
                1() = [0]
                s(x1) = [0] x1 + [0]
                *(x1, x2) = [0] x1 + [0] x2 + [0]
                floop(x1, x2) = [0] x1 + [0] x2 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                fac^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                1^#() = [0]
                c_1(x1) = [0] x1 + [0]
                *^#(x1, x2) = [0] x1 + [0] x2 + [0]
                floop^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {fac^#(0()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fac^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                fac^#(x1) = [1] x1 + [7]
                c_9() = [1]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.23

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.23

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  fac(0()) -> 1()
     , fac(s(x)) -> *(s(x), fac(x))
     , floop(0(), y) -> y
     , floop(s(x), y) -> floop(x, *(s(x), y))
     , *(x, 0()) -> 0()
     , *(x, s(y)) -> +(*(x, y), x)
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))
     , 1() -> s(0())
     , fac(0()) -> s(0())}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fac^#(0()) -> c_0(1^#())
              , 2: fac^#(s(x)) -> c_1(*^#(s(x), fac(x)))
              , 3: floop^#(0(), y) -> c_2(y)
              , 4: floop^#(s(x), y) -> c_3(floop^#(x, *(s(x), y)))
              , 5: *^#(x, 0()) -> c_4()
              , 6: *^#(x, s(y)) -> c_5(+^#(*(x, y), x))
              , 7: +^#(x, 0()) -> c_6(x)
              , 8: +^#(x, s(y)) -> c_7(+^#(x, y))
              , 9: 1^#() -> c_8()
              , 10: fac^#(0()) -> c_9()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [     inherited      ]
                |
                |->{5}                                                   [       MAYBE        ]
                |
                `->{6}                                                   [     inherited      ]
                    |
                    |->{7}                                               [         NA         ]
                    |
                    `->{8}                                               [     inherited      ]
                        |
                        `->{7}                                           [         NA         ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
                |
                `->{9}                                                   [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(floop) = {},
                 Uargs(+) = {}, Uargs(fac^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(*^#) = {}, Uargs(floop^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(c_5) = {}, Uargs(+^#) = {}, Uargs(c_6) = {},
                 Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                1() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                *(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                floop(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                fac^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                1^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                *^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                floop^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {fac^#(0()) -> c_0(1^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fac^#) = {}, Uargs(c_0) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                fac^#(x1) = [0 2 2] x1 + [7]
                            [2 2 0]      [7]
                            [0 0 0]      [7]
                c_0(x1) = [2 2 0] x1 + [1]
                          [0 0 0]      [7]
                          [2 0 0]      [3]
                1^#() = [2]
                        [2]
                        [0]
           
           * Path {1}->{9}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(floop) = {},
                 Uargs(+) = {}, Uargs(fac^#) = {}, Uargs(c_0) = {1},
                 Uargs(c_1) = {}, Uargs(*^#) = {}, Uargs(floop^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_5) = {}, Uargs(+^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                1() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                *(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                floop(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                fac^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                1^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                *^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                floop^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {1^#() -> c_8()}
               Weak Rules: {fac^#(0()) -> c_0(1^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fac^#) = {}, Uargs(c_0) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [6]
                      [2]
                fac^#(x1) = [2 0 2] x1 + [7]
                            [0 2 0]      [3]
                            [2 0 0]      [7]
                c_0(x1) = [2 2 0] x1 + [2]
                          [2 2 2]      [3]
                          [2 2 0]      [3]
                1^#() = [2]
                        [2]
                        [2]
                c_8() = [1]
                        [0]
                        [0]
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{6}->{8}->{7}.
           
           * Path {2}->{5}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  fac(0()) -> 1()
                , fac(s(x)) -> *(s(x), fac(x))
                , fac(0()) -> s(0())
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , 1() -> s(0())
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  fac^#(s(x)) -> c_1(*^#(s(x), fac(x)))
                  , *^#(x, 0()) -> c_4()
                  , fac(0()) -> 1()
                  , fac(s(x)) -> *(s(x), fac(x))
                  , fac(0()) -> s(0())
                  , *(x, 0()) -> 0()
                  , *(x, s(y)) -> +(*(x, y), x)
                  , 1() -> s(0())
                  , +(x, 0()) -> x
                  , +(x, s(y)) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2}->{6}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{6}->{8}->{7}.
           
           * Path {2}->{6}->{7}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  fac(0()) -> 1()
                , fac(s(x)) -> *(s(x), fac(x))
                , fac(0()) -> s(0())
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , 1() -> s(0())
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{6}->{8}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {2}->{6}->{8}->{7}.
           
           * Path {2}->{6}->{8}->{7}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  fac(0()) -> 1()
                , fac(s(x)) -> *(s(x), fac(x))
                , fac(0()) -> s(0())
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , 1() -> s(0())
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{3}.
           
           * Path {4}->{3}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(floop) = {},
                 Uargs(+) = {}, Uargs(fac^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(*^#) = {}, Uargs(floop^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(c_5) = {}, Uargs(+^#) = {}, Uargs(c_6) = {},
                 Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                1() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                *(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                floop(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                fac^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                1^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                *^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                floop^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {fac^#(0()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fac^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                fac^#(x1) = [0 2 0] x1 + [7]
                            [2 2 0]      [3]
                            [2 2 2]      [3]
                c_9() = [0]
                        [1]
                        [1]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fac^#(0()) -> c_0(1^#())
              , 2: fac^#(s(x)) -> c_1(*^#(s(x), fac(x)))
              , 3: floop^#(0(), y) -> c_2(y)
              , 4: floop^#(s(x), y) -> c_3(floop^#(x, *(s(x), y)))
              , 5: *^#(x, 0()) -> c_4()
              , 6: *^#(x, s(y)) -> c_5(+^#(*(x, y), x))
              , 7: +^#(x, 0()) -> c_6(x)
              , 8: +^#(x, s(y)) -> c_7(+^#(x, y))
              , 9: 1^#() -> c_8()
              , 10: fac^#(0()) -> c_9()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [     inherited      ]
                |
                |->{5}                                                   [       MAYBE        ]
                |
                `->{6}                                                   [     inherited      ]
                    |
                    |->{7}                                               [         NA         ]
                    |
                    `->{8}                                               [     inherited      ]
                        |
                        `->{7}                                           [         NA         ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
                |
                `->{9}                                                   [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(floop) = {},
                 Uargs(+) = {}, Uargs(fac^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(*^#) = {}, Uargs(floop^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(c_5) = {}, Uargs(+^#) = {}, Uargs(c_6) = {},
                 Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                0() = [0]
                      [0]
                1() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                floop(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                fac^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                1^#() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                *^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                floop^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {fac^#(0()) -> c_0(1^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fac^#) = {}, Uargs(c_0) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                fac^#(x1) = [2 2] x1 + [7]
                            [2 0]      [7]
                c_0(x1) = [0 2] x1 + [3]
                          [0 2]      [3]
                1^#() = [0]
                        [2]
           
           * Path {1}->{9}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(floop) = {},
                 Uargs(+) = {}, Uargs(fac^#) = {}, Uargs(c_0) = {1},
                 Uargs(c_1) = {}, Uargs(*^#) = {}, Uargs(floop^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_5) = {}, Uargs(+^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                0() = [0]
                      [0]
                1() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                floop(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                fac^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                1^#() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                *^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                floop^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {1^#() -> c_8()}
               Weak Rules: {fac^#(0()) -> c_0(1^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fac^#) = {}, Uargs(c_0) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                fac^#(x1) = [0 0] x1 + [7]
                            [1 2]      [7]
                c_0(x1) = [2 0] x1 + [2]
                          [2 2]      [3]
                1^#() = [2]
                        [2]
                c_8() = [1]
                        [0]
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{6}->{8}->{7}.
           
           * Path {2}->{5}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  fac(0()) -> 1()
                , fac(s(x)) -> *(s(x), fac(x))
                , fac(0()) -> s(0())
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , 1() -> s(0())
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  fac^#(s(x)) -> c_1(*^#(s(x), fac(x)))
                  , *^#(x, 0()) -> c_4()
                  , fac(0()) -> 1()
                  , fac(s(x)) -> *(s(x), fac(x))
                  , fac(0()) -> s(0())
                  , *(x, 0()) -> 0()
                  , *(x, s(y)) -> +(*(x, y), x)
                  , 1() -> s(0())
                  , +(x, 0()) -> x
                  , +(x, s(y)) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {2}->{6}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{6}->{8}->{7}.
           
           * Path {2}->{6}->{7}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  fac(0()) -> 1()
                , fac(s(x)) -> *(s(x), fac(x))
                , fac(0()) -> s(0())
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , 1() -> s(0())
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{6}->{8}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {2}->{6}->{8}->{7}.
           
           * Path {2}->{6}->{8}->{7}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  fac(0()) -> 1()
                , fac(s(x)) -> *(s(x), fac(x))
                , fac(0()) -> s(0())
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , 1() -> s(0())
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{3}.
           
           * Path {4}->{3}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(floop) = {},
                 Uargs(+) = {}, Uargs(fac^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(*^#) = {}, Uargs(floop^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(c_5) = {}, Uargs(+^#) = {}, Uargs(c_6) = {},
                 Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                0() = [0]
                      [0]
                1() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                floop(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                fac^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                1^#() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                *^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                floop^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {fac^#(0()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fac^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                fac^#(x1) = [2 0] x1 + [7]
                            [2 2]      [7]
                c_9() = [0]
                        [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fac^#(0()) -> c_0(1^#())
              , 2: fac^#(s(x)) -> c_1(*^#(s(x), fac(x)))
              , 3: floop^#(0(), y) -> c_2(y)
              , 4: floop^#(s(x), y) -> c_3(floop^#(x, *(s(x), y)))
              , 5: *^#(x, 0()) -> c_4()
              , 6: *^#(x, s(y)) -> c_5(+^#(*(x, y), x))
              , 7: +^#(x, 0()) -> c_6(x)
              , 8: +^#(x, s(y)) -> c_7(+^#(x, y))
              , 9: 1^#() -> c_8()
              , 10: fac^#(0()) -> c_9()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                `->{3}                                                   [       MAYBE        ]
             
             ->{2}                                                       [     inherited      ]
                |
                |->{5}                                                   [         NA         ]
                |
                `->{6}                                                   [     inherited      ]
                    |
                    |->{7}                                               [         NA         ]
                    |
                    `->{8}                                               [     inherited      ]
                        |
                        `->{7}                                           [         NA         ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
                |
                `->{9}                                                   [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(floop) = {},
                 Uargs(+) = {}, Uargs(fac^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(*^#) = {}, Uargs(floop^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(c_5) = {}, Uargs(+^#) = {}, Uargs(c_6) = {},
                 Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0] x1 + [0]
                0() = [0]
                1() = [0]
                s(x1) = [0] x1 + [0]
                *(x1, x2) = [0] x1 + [0] x2 + [0]
                floop(x1, x2) = [0] x1 + [0] x2 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                fac^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                1^#() = [0]
                c_1(x1) = [0] x1 + [0]
                *^#(x1, x2) = [0] x1 + [0] x2 + [0]
                floop^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {fac^#(0()) -> c_0(1^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fac^#) = {}, Uargs(c_0) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                fac^#(x1) = [2] x1 + [5]
                c_0(x1) = [2] x1 + [3]
                1^#() = [2]
           
           * Path {1}->{9}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(floop) = {},
                 Uargs(+) = {}, Uargs(fac^#) = {}, Uargs(c_0) = {1},
                 Uargs(c_1) = {}, Uargs(*^#) = {}, Uargs(floop^#) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(c_5) = {}, Uargs(+^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0] x1 + [0]
                0() = [0]
                1() = [0]
                s(x1) = [0] x1 + [0]
                *(x1, x2) = [0] x1 + [0] x2 + [0]
                floop(x1, x2) = [0] x1 + [0] x2 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                fac^#(x1) = [0] x1 + [0]
                c_0(x1) = [1] x1 + [0]
                1^#() = [0]
                c_1(x1) = [0] x1 + [0]
                *^#(x1, x2) = [0] x1 + [0] x2 + [0]
                floop^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {1^#() -> c_8()}
               Weak Rules: {fac^#(0()) -> c_0(1^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fac^#) = {}, Uargs(c_0) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                fac^#(x1) = [0] x1 + [6]
                c_0(x1) = [2] x1 + [2]
                1^#() = [2]
                c_8() = [1]
           
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{6}->{8}->{7}.
           
           * Path {2}->{5}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  fac(0()) -> 1()
                , fac(s(x)) -> *(s(x), fac(x))
                , fac(0()) -> s(0())
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , 1() -> s(0())
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{6}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{6}->{8}->{7}.
           
           * Path {2}->{6}->{7}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  fac(0()) -> 1()
                , fac(s(x)) -> *(s(x), fac(x))
                , fac(0()) -> s(0())
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , 1() -> s(0())
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{6}->{8}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {2}->{6}->{8}->{7}.
           
           * Path {2}->{6}->{8}->{7}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  fac(0()) -> 1()
                , fac(s(x)) -> *(s(x), fac(x))
                , fac(0()) -> s(0())
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , 1() -> s(0())
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{3}.
           
           * Path {4}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  *(x, 0()) -> 0()
                , *(x, s(y)) -> +(*(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  floop^#(s(x), y) -> c_3(floop^#(x, *(s(x), y)))
                  , floop^#(0(), y) -> c_2(y)
                  , *(x, 0()) -> 0()
                  , *(x, s(y)) -> +(*(x, y), x)
                  , +(x, 0()) -> x
                  , +(x, s(y)) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(floop) = {},
                 Uargs(+) = {}, Uargs(fac^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(*^#) = {}, Uargs(floop^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(c_5) = {}, Uargs(+^#) = {}, Uargs(c_6) = {},
                 Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0] x1 + [0]
                0() = [0]
                1() = [0]
                s(x1) = [0] x1 + [0]
                *(x1, x2) = [0] x1 + [0] x2 + [0]
                floop(x1, x2) = [0] x1 + [0] x2 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                fac^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                1^#() = [0]
                c_1(x1) = [0] x1 + [0]
                *^#(x1, x2) = [0] x1 + [0] x2 + [0]
                floop^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {fac^#(0()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fac^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                fac^#(x1) = [1] x1 + [7]
                c_9() = [1]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool pair1rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 2.23

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  fac(0()) -> 1()
     , fac(s(x)) -> *(s(x), fac(x))
     , floop(0(), y) -> y
     , floop(s(x), y) -> floop(x, *(s(x), y))
     , *(x, 0()) -> 0()
     , *(x, s(y)) -> +(*(x, y), x)
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))
     , 1() -> s(0())
     , fac(0()) -> s(0())}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair2rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 2.23

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  fac(0()) -> 1()
     , fac(s(x)) -> *(s(x), fac(x))
     , floop(0(), y) -> y
     , floop(s(x), y) -> floop(x, *(s(x), y))
     , *(x, 0()) -> 0()
     , *(x, s(y)) -> +(*(x, y), x)
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))
     , 1() -> s(0())
     , fac(0()) -> s(0())}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair2 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3irc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 2.23

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  fac(0()) -> 1()
     , fac(s(x)) -> *(s(x), fac(x))
     , floop(0(), y) -> y
     , floop(s(x), y) -> floop(x, *(s(x), y))
     , *(x, 0()) -> 0()
     , *(x, s(y)) -> +(*(x, y), x)
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))
     , 1() -> s(0())
     , fac(0()) -> s(0())}
  StartTerms: basic terms
  Strategy: innermost

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 2.23

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  fac(0()) -> 1()
     , fac(s(x)) -> *(s(x), fac(x))
     , floop(0(), y) -> y
     , floop(s(x), y) -> floop(x, *(s(x), y))
     , *(x, 0()) -> 0()
     , *(x, s(y)) -> +(*(x, y), x)
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))
     , 1() -> s(0())
     , fac(0()) -> s(0())}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 2.23

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  fac(0()) -> 1()
     , fac(s(x)) -> *(s(x), fac(x))
     , floop(0(), y) -> y
     , floop(s(x), y) -> floop(x, *(s(x), y))
     , *(x, 0()) -> 0()
     , *(x, s(y)) -> +(*(x, y), x)
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))
     , 1() -> s(0())
     , fac(0()) -> s(0())}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool tup3irc

Execution Time60.066135ms
Answer
TIMEOUT
InputSK90 2.23

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  fac(0()) -> 1()
     , fac(s(x)) -> *(s(x), fac(x))
     , floop(0(), y) -> y
     , floop(s(x), y) -> floop(x, *(s(x), y))
     , *(x, 0()) -> 0()
     , *(x, s(y)) -> +(*(x, y), x)
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))
     , 1() -> s(0())
     , fac(0()) -> s(0())}
  StartTerms: basic terms
  Strategy: innermost

Certificate: TIMEOUT

Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..