Problem SK90 2.27

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.27

stdout:

MAYBE

Problem:
 fib(0()) -> 0()
 fib(s(0())) -> s(0())
 fib(s(s(0()))) -> s(0())
 fib(s(s(x))) -> sp(g(x))
 g(0()) -> pair(s(0()),0())
 g(s(0())) -> pair(s(0()),s(0()))
 g(s(x)) -> np(g(x))
 sp(pair(x,y)) -> +(x,y)
 np(pair(x,y)) -> pair(+(x,y),x)
 +(x,0()) -> x
 +(x,s(y)) -> s(+(x,y))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.27

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.27

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  fib(0()) -> 0()
     , fib(s(0())) -> s(0())
     , fib(s(s(0()))) -> s(0())
     , fib(s(s(x))) -> sp(g(x))
     , g(0()) -> pair(s(0()), 0())
     , g(s(0())) -> pair(s(0()), s(0()))
     , g(s(x)) -> np(g(x))
     , sp(pair(x, y)) -> +(x, y)
     , np(pair(x, y)) -> pair(+(x, y), x)
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fib^#(0()) -> c_0()
              , 2: fib^#(s(0())) -> c_1()
              , 3: fib^#(s(s(0()))) -> c_2()
              , 4: fib^#(s(s(x))) -> c_3(sp^#(g(x)))
              , 5: g^#(0()) -> c_4()
              , 6: g^#(s(0())) -> c_5()
              , 7: g^#(s(x)) -> c_6(np^#(g(x)))
              , 8: sp^#(pair(x, y)) -> c_7(+^#(x, y))
              , 9: np^#(pair(x, y)) -> c_8(+^#(x, y))
              , 10: +^#(x, 0()) -> c_9()
              , 11: +^#(x, s(y)) -> c_10(+^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                `->{9}                                                   [     inherited      ]
                    |
                    |->{10}                                              [       MAYBE        ]
                    |
                    `->{11}                                              [     inherited      ]
                        |
                        `->{10}                                          [         NA         ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                `->{8}                                                   [     inherited      ]
                    |
                    |->{10}                                              [         NA         ]
                    |
                    `->{11}                                              [     inherited      ]
                        |
                        `->{10}                                          [         NA         ]
             
             ->{3}                                                       [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sp(x1) = [0 0 0] x1 + [0]
                         [0 0 0]      [0]
                         [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                pair(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                np(x1) = [0 0 0] x1 + [0]
                         [0 0 0]      [0]
                         [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sp^#(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                np^#(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {fib^#(0()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fib^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                fib^#(x1) = [0 2 0] x1 + [7]
                            [2 2 0]      [3]
                            [2 2 2]      [3]
                c_0() = [0]
                        [1]
                        [1]
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sp(x1) = [0 0 0] x1 + [0]
                         [0 0 0]      [0]
                         [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                pair(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                np(x1) = [0 0 0] x1 + [0]
                         [0 0 0]      [0]
                         [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sp^#(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                np^#(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {fib^#(s(0())) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(fib^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                      [0]
                s(x1) = [0 3 2] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                fib^#(x1) = [2 0 0] x1 + [3]
                            [0 0 0]      [7]
                            [0 0 0]      [7]
                c_1() = [0]
                        [1]
                        [1]
           
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sp(x1) = [0 0 0] x1 + [0]
                         [0 0 0]      [0]
                         [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                pair(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                np(x1) = [0 0 0] x1 + [0]
                         [0 0 0]      [0]
                         [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sp^#(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                np^#(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {fib^#(s(s(0()))) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(fib^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                      [0]
                s(x1) = [1 1 0] x1 + [2]
                        [0 0 2]      [0]
                        [0 0 0]      [0]
                fib^#(x1) = [2 0 0] x1 + [3]
                            [0 0 0]      [7]
                            [2 2 0]      [3]
                c_2() = [0]
                        [1]
                        [1]
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{8}->{11}->{10}.
           
           * Path {4}->{8}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{8}->{11}->{10}.
           
           * Path {4}->{8}->{10}: NA
             -----------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{8}->{11}: inherited
             ------------------------------
             
             This path is subsumed by the proof of path {4}->{8}->{11}->{10}.
           
           * Path {4}->{8}->{11}->{10}: NA
             -----------------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sp(x1) = [0 0 0] x1 + [0]
                         [0 0 0]      [0]
                         [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                pair(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                np(x1) = [0 0 0] x1 + [0]
                         [0 0 0]      [0]
                         [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sp^#(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                np^#(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(0()) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                g^#(x1) = [0 2 0] x1 + [7]
                          [2 2 0]      [3]
                          [2 2 2]      [3]
                c_4() = [0]
                        [1]
                        [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sp(x1) = [0 0 0] x1 + [0]
                         [0 0 0]      [0]
                         [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                pair(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                np(x1) = [0 0 0] x1 + [0]
                         [0 0 0]      [0]
                         [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sp^#(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                np^#(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(s(0())) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                      [0]
                s(x1) = [0 3 2] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                g^#(x1) = [2 0 0] x1 + [3]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
                c_5() = [0]
                        [1]
                        [1]
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{9}->{11}->{10}.
           
           * Path {7}->{9}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {7}->{9}->{11}->{10}.
           
           * Path {7}->{9}->{10}: MAYBE
             --------------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  np^#(pair(x, y)) -> c_8(+^#(x, y))
                  , g^#(s(x)) -> c_6(np^#(g(x)))
                  , +^#(x, 0()) -> c_9()
                  , g(0()) -> pair(s(0()), 0())
                  , g(s(0())) -> pair(s(0()), s(0()))
                  , g(s(x)) -> np(g(x))
                  , np(pair(x, y)) -> pair(+(x, y), x)
                  , +(x, 0()) -> x
                  , +(x, s(y)) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {7}->{9}->{11}: inherited
             ------------------------------
             
             This path is subsumed by the proof of path {7}->{9}->{11}->{10}.
           
           * Path {7}->{9}->{11}->{10}: NA
             -----------------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fib^#(0()) -> c_0()
              , 2: fib^#(s(0())) -> c_1()
              , 3: fib^#(s(s(0()))) -> c_2()
              , 4: fib^#(s(s(x))) -> c_3(sp^#(g(x)))
              , 5: g^#(0()) -> c_4()
              , 6: g^#(s(0())) -> c_5()
              , 7: g^#(s(x)) -> c_6(np^#(g(x)))
              , 8: sp^#(pair(x, y)) -> c_7(+^#(x, y))
              , 9: np^#(pair(x, y)) -> c_8(+^#(x, y))
              , 10: +^#(x, 0()) -> c_9()
              , 11: +^#(x, s(y)) -> c_10(+^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                `->{9}                                                   [     inherited      ]
                    |
                    |->{10}                                              [       MAYBE        ]
                    |
                    `->{11}                                              [     inherited      ]
                        |
                        `->{10}                                          [         NA         ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                `->{8}                                                   [     inherited      ]
                    |
                    |->{10}                                              [         NA         ]
                    |
                    `->{11}                                              [     inherited      ]
                        |
                        `->{10}                                          [         NA         ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sp(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                pair(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                np(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sp^#(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                np^#(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {fib^#(0()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fib^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                fib^#(x1) = [2 0] x1 + [7]
                            [2 2]      [7]
                c_0() = [0]
                        [1]
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sp(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                pair(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                np(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sp^#(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                np^#(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {fib^#(s(0())) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(fib^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                s(x1) = [0 1] x1 + [2]
                        [0 0]      [2]
                fib^#(x1) = [2 2] x1 + [3]
                            [2 2]      [3]
                c_1() = [0]
                        [1]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sp(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                pair(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                np(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sp^#(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                np^#(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {fib^#(s(s(0()))) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(fib^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [0]
                s(x1) = [0 3] x1 + [0]
                        [0 0]      [2]
                fib^#(x1) = [2 0] x1 + [3]
                            [2 0]      [3]
                c_2() = [0]
                        [1]
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{8}->{11}->{10}.
           
           * Path {4}->{8}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{8}->{11}->{10}.
           
           * Path {4}->{8}->{10}: NA
             -----------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{8}->{11}: inherited
             ------------------------------
             
             This path is subsumed by the proof of path {4}->{8}->{11}->{10}.
           
           * Path {4}->{8}->{11}->{10}: NA
             -----------------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sp(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                pair(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                np(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sp^#(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                np^#(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(0()) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                g^#(x1) = [2 0] x1 + [7]
                          [2 2]      [7]
                c_4() = [0]
                        [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sp(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                pair(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                np(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sp^#(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                np^#(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(s(0())) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                s(x1) = [0 1] x1 + [2]
                        [0 0]      [2]
                g^#(x1) = [2 2] x1 + [3]
                          [2 2]      [3]
                c_5() = [0]
                        [1]
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{9}->{11}->{10}.
           
           * Path {7}->{9}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {7}->{9}->{11}->{10}.
           
           * Path {7}->{9}->{10}: MAYBE
             --------------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  np^#(pair(x, y)) -> c_8(+^#(x, y))
                  , g^#(s(x)) -> c_6(np^#(g(x)))
                  , +^#(x, 0()) -> c_9()
                  , g(0()) -> pair(s(0()), 0())
                  , g(s(0())) -> pair(s(0()), s(0()))
                  , g(s(x)) -> np(g(x))
                  , np(pair(x, y)) -> pair(+(x, y), x)
                  , +(x, 0()) -> x
                  , +(x, s(y)) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {7}->{9}->{11}: inherited
             ------------------------------
             
             This path is subsumed by the proof of path {7}->{9}->{11}->{10}.
           
           * Path {7}->{9}->{11}->{10}: NA
             -----------------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fib^#(0()) -> c_0()
              , 2: fib^#(s(0())) -> c_1()
              , 3: fib^#(s(s(0()))) -> c_2()
              , 4: fib^#(s(s(x))) -> c_3(sp^#(g(x)))
              , 5: g^#(0()) -> c_4()
              , 6: g^#(s(0())) -> c_5()
              , 7: g^#(s(x)) -> c_6(np^#(g(x)))
              , 8: sp^#(pair(x, y)) -> c_7(+^#(x, y))
              , 9: np^#(pair(x, y)) -> c_8(+^#(x, y))
              , 10: +^#(x, 0()) -> c_9()
              , 11: +^#(x, s(y)) -> c_10(+^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                `->{9}                                                   [     inherited      ]
                    |
                    |->{10}                                              [       MAYBE        ]
                    |
                    `->{11}                                              [     inherited      ]
                        |
                        `->{10}                                          [         NA         ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                `->{8}                                                   [     inherited      ]
                    |
                    |->{10}                                              [         NA         ]
                    |
                    `->{11}                                              [     inherited      ]
                        |
                        `->{10}                                          [         NA         ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                sp(x1) = [0] x1 + [0]
                g(x1) = [0] x1 + [0]
                pair(x1, x2) = [0] x1 + [0] x2 + [0]
                np(x1) = [0] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                sp^#(x1) = [0] x1 + [0]
                g^#(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                np^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {fib^#(0()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fib^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                fib^#(x1) = [1] x1 + [7]
                c_0() = [1]
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                sp(x1) = [0] x1 + [0]
                g(x1) = [0] x1 + [0]
                pair(x1, x2) = [0] x1 + [0] x2 + [0]
                np(x1) = [0] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                sp^#(x1) = [0] x1 + [0]
                g^#(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                np^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {fib^#(s(0())) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(fib^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                s(x1) = [0] x1 + [2]
                fib^#(x1) = [2] x1 + [7]
                c_1() = [0]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                sp(x1) = [0] x1 + [0]
                g(x1) = [0] x1 + [0]
                pair(x1, x2) = [0] x1 + [0] x2 + [0]
                np(x1) = [0] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                sp^#(x1) = [0] x1 + [0]
                g^#(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                np^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {fib^#(s(s(0()))) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(fib^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                s(x1) = [0] x1 + [0]
                fib^#(x1) = [0] x1 + [7]
                c_2() = [0]
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{8}->{11}->{10}.
           
           * Path {4}->{8}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{8}->{11}->{10}.
           
           * Path {4}->{8}->{10}: NA
             -----------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{8}->{11}: inherited
             ------------------------------
             
             This path is subsumed by the proof of path {4}->{8}->{11}->{10}.
           
           * Path {4}->{8}->{11}->{10}: NA
             -----------------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                sp(x1) = [0] x1 + [0]
                g(x1) = [0] x1 + [0]
                pair(x1, x2) = [0] x1 + [0] x2 + [0]
                np(x1) = [0] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                sp^#(x1) = [0] x1 + [0]
                g^#(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                np^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(0()) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                g^#(x1) = [1] x1 + [7]
                c_4() = [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                sp(x1) = [0] x1 + [0]
                g(x1) = [0] x1 + [0]
                pair(x1, x2) = [0] x1 + [0] x2 + [0]
                np(x1) = [0] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                sp^#(x1) = [0] x1 + [0]
                g^#(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                np^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {g^#(s(0())) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                s(x1) = [0] x1 + [2]
                g^#(x1) = [2] x1 + [7]
                c_5() = [0]
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{9}->{11}->{10}.
           
           * Path {7}->{9}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {7}->{9}->{11}->{10}.
           
           * Path {7}->{9}->{10}: MAYBE
             --------------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  np^#(pair(x, y)) -> c_8(+^#(x, y))
                  , g^#(s(x)) -> c_6(np^#(g(x)))
                  , +^#(x, 0()) -> c_9()
                  , g(0()) -> pair(s(0()), 0())
                  , g(s(0())) -> pair(s(0()), s(0()))
                  , g(s(x)) -> np(g(x))
                  , np(pair(x, y)) -> pair(+(x, y), x)
                  , +(x, 0()) -> x
                  , +(x, s(y)) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {7}->{9}->{11}: inherited
             ------------------------------
             
             This path is subsumed by the proof of path {7}->{9}->{11}->{10}.
           
           * Path {7}->{9}->{11}->{10}: NA
             -----------------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.27

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.27

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  fib(0()) -> 0()
     , fib(s(0())) -> s(0())
     , fib(s(s(0()))) -> s(0())
     , fib(s(s(x))) -> sp(g(x))
     , g(0()) -> pair(s(0()), 0())
     , g(s(0())) -> pair(s(0()), s(0()))
     , g(s(x)) -> np(g(x))
     , sp(pair(x, y)) -> +(x, y)
     , np(pair(x, y)) -> pair(+(x, y), x)
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fib^#(0()) -> c_0()
              , 2: fib^#(s(0())) -> c_1()
              , 3: fib^#(s(s(0()))) -> c_2()
              , 4: fib^#(s(s(x))) -> c_3(sp^#(g(x)))
              , 5: g^#(0()) -> c_4()
              , 6: g^#(s(0())) -> c_5()
              , 7: g^#(s(x)) -> c_6(np^#(g(x)))
              , 8: sp^#(pair(x, y)) -> c_7(+^#(x, y))
              , 9: np^#(pair(x, y)) -> c_8(+^#(x, y), x)
              , 10: +^#(x, 0()) -> c_9(x)
              , 11: +^#(x, s(y)) -> c_10(+^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                `->{9}                                                   [     inherited      ]
                    |
                    |->{10}                                              [       MAYBE        ]
                    |
                    `->{11}                                              [     inherited      ]
                        |
                        `->{10}                                          [         NA         ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                `->{8}                                                   [     inherited      ]
                    |
                    |->{10}                                              [         NA         ]
                    |
                    `->{11}                                              [     inherited      ]
                        |
                        `->{10}                                          [         NA         ]
             
             ->{3}                                                       [   YES(?,O(n^1))    ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sp(x1) = [0 0 0] x1 + [0]
                         [0 0 0]      [0]
                         [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                pair(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                np(x1) = [0 0 0] x1 + [0]
                         [0 0 0]      [0]
                         [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sp^#(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                np^#(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_8(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {fib^#(0()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fib^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                fib^#(x1) = [0 2 0] x1 + [7]
                            [2 2 0]      [3]
                            [2 2 2]      [3]
                c_0() = [0]
                        [1]
                        [1]
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sp(x1) = [0 0 0] x1 + [0]
                         [0 0 0]      [0]
                         [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                pair(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                np(x1) = [0 0 0] x1 + [0]
                         [0 0 0]      [0]
                         [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sp^#(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                np^#(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_8(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {fib^#(s(0())) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(fib^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                      [0]
                s(x1) = [0 3 2] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                fib^#(x1) = [2 0 0] x1 + [3]
                            [0 0 0]      [7]
                            [0 0 0]      [7]
                c_1() = [0]
                        [1]
                        [1]
           
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sp(x1) = [0 0 0] x1 + [0]
                         [0 0 0]      [0]
                         [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                pair(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                np(x1) = [0 0 0] x1 + [0]
                         [0 0 0]      [0]
                         [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sp^#(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                np^#(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_8(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {fib^#(s(s(0()))) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(fib^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                      [0]
                s(x1) = [1 1 0] x1 + [2]
                        [0 0 2]      [0]
                        [0 0 0]      [0]
                fib^#(x1) = [2 0 0] x1 + [3]
                            [0 0 0]      [7]
                            [2 2 0]      [3]
                c_2() = [0]
                        [1]
                        [1]
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{8}->{11}->{10}.
           
           * Path {4}->{8}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{8}->{11}->{10}.
           
           * Path {4}->{8}->{10}: NA
             -----------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{8}->{11}: inherited
             ------------------------------
             
             This path is subsumed by the proof of path {4}->{8}->{11}->{10}.
           
           * Path {4}->{8}->{11}->{10}: NA
             -----------------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sp(x1) = [0 0 0] x1 + [0]
                         [0 0 0]      [0]
                         [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                pair(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                np(x1) = [0 0 0] x1 + [0]
                         [0 0 0]      [0]
                         [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sp^#(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                np^#(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_8(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(0()) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                g^#(x1) = [0 2 0] x1 + [7]
                          [2 2 0]      [3]
                          [2 2 2]      [3]
                c_4() = [0]
                        [1]
                        [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sp(x1) = [0 0 0] x1 + [0]
                         [0 0 0]      [0]
                         [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                pair(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                np(x1) = [0 0 0] x1 + [0]
                         [0 0 0]      [0]
                         [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                fib^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sp^#(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                np^#(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_8(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(s(0())) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                      [0]
                s(x1) = [0 3 2] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                g^#(x1) = [2 0 0] x1 + [3]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
                c_5() = [0]
                        [1]
                        [1]
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{9}->{11}->{10}.
           
           * Path {7}->{9}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {7}->{9}->{11}->{10}.
           
           * Path {7}->{9}->{10}: MAYBE
             --------------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  np^#(pair(x, y)) -> c_8(+^#(x, y), x)
                  , g^#(s(x)) -> c_6(np^#(g(x)))
                  , +^#(x, 0()) -> c_9(x)
                  , g(0()) -> pair(s(0()), 0())
                  , g(s(0())) -> pair(s(0()), s(0()))
                  , g(s(x)) -> np(g(x))
                  , np(pair(x, y)) -> pair(+(x, y), x)
                  , +(x, 0()) -> x
                  , +(x, s(y)) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {7}->{9}->{11}: inherited
             ------------------------------
             
             This path is subsumed by the proof of path {7}->{9}->{11}->{10}.
           
           * Path {7}->{9}->{11}->{10}: NA
             -----------------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fib^#(0()) -> c_0()
              , 2: fib^#(s(0())) -> c_1()
              , 3: fib^#(s(s(0()))) -> c_2()
              , 4: fib^#(s(s(x))) -> c_3(sp^#(g(x)))
              , 5: g^#(0()) -> c_4()
              , 6: g^#(s(0())) -> c_5()
              , 7: g^#(s(x)) -> c_6(np^#(g(x)))
              , 8: sp^#(pair(x, y)) -> c_7(+^#(x, y))
              , 9: np^#(pair(x, y)) -> c_8(+^#(x, y), x)
              , 10: +^#(x, 0()) -> c_9(x)
              , 11: +^#(x, s(y)) -> c_10(+^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                `->{9}                                                   [     inherited      ]
                    |
                    |->{10}                                              [       MAYBE        ]
                    |
                    `->{11}                                              [     inherited      ]
                        |
                        `->{10}                                          [         NA         ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                `->{8}                                                   [     inherited      ]
                    |
                    |->{10}                                              [         NA         ]
                    |
                    `->{11}                                              [     inherited      ]
                        |
                        `->{10}                                          [         NA         ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sp(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                pair(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                np(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sp^#(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                np^#(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_8(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {fib^#(0()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fib^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                fib^#(x1) = [2 0] x1 + [7]
                            [2 2]      [7]
                c_0() = [0]
                        [1]
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sp(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                pair(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                np(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sp^#(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                np^#(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_8(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {fib^#(s(0())) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(fib^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                s(x1) = [0 1] x1 + [2]
                        [0 0]      [2]
                fib^#(x1) = [2 2] x1 + [3]
                            [2 2]      [3]
                c_1() = [0]
                        [1]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sp(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                pair(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                np(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sp^#(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                np^#(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_8(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {fib^#(s(s(0()))) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(fib^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [0]
                s(x1) = [0 3] x1 + [0]
                        [0 0]      [2]
                fib^#(x1) = [2 0] x1 + [3]
                            [2 0]      [3]
                c_2() = [0]
                        [1]
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{8}->{11}->{10}.
           
           * Path {4}->{8}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{8}->{11}->{10}.
           
           * Path {4}->{8}->{10}: NA
             -----------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{8}->{11}: inherited
             ------------------------------
             
             This path is subsumed by the proof of path {4}->{8}->{11}->{10}.
           
           * Path {4}->{8}->{11}->{10}: NA
             -----------------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sp(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                pair(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                np(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sp^#(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                np^#(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_8(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(0()) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                g^#(x1) = [2 0] x1 + [7]
                          [2 2]      [7]
                c_4() = [0]
                        [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sp(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                pair(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                np(x1) = [0 0] x1 + [0]
                         [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                fib^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sp^#(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                np^#(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_8(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(s(0())) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                s(x1) = [0 1] x1 + [2]
                        [0 0]      [2]
                g^#(x1) = [2 2] x1 + [3]
                          [2 2]      [3]
                c_5() = [0]
                        [1]
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{9}->{11}->{10}.
           
           * Path {7}->{9}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {7}->{9}->{11}->{10}.
           
           * Path {7}->{9}->{10}: MAYBE
             --------------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  np^#(pair(x, y)) -> c_8(+^#(x, y), x)
                  , g^#(s(x)) -> c_6(np^#(g(x)))
                  , +^#(x, 0()) -> c_9(x)
                  , g(0()) -> pair(s(0()), 0())
                  , g(s(0())) -> pair(s(0()), s(0()))
                  , g(s(x)) -> np(g(x))
                  , np(pair(x, y)) -> pair(+(x, y), x)
                  , +(x, 0()) -> x
                  , +(x, s(y)) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {7}->{9}->{11}: inherited
             ------------------------------
             
             This path is subsumed by the proof of path {7}->{9}->{11}->{10}.
           
           * Path {7}->{9}->{11}->{10}: NA
             -----------------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fib^#(0()) -> c_0()
              , 2: fib^#(s(0())) -> c_1()
              , 3: fib^#(s(s(0()))) -> c_2()
              , 4: fib^#(s(s(x))) -> c_3(sp^#(g(x)))
              , 5: g^#(0()) -> c_4()
              , 6: g^#(s(0())) -> c_5()
              , 7: g^#(s(x)) -> c_6(np^#(g(x)))
              , 8: sp^#(pair(x, y)) -> c_7(+^#(x, y))
              , 9: np^#(pair(x, y)) -> c_8(+^#(x, y), x)
              , 10: +^#(x, 0()) -> c_9(x)
              , 11: +^#(x, s(y)) -> c_10(+^#(x, y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                `->{9}                                                   [     inherited      ]
                    |
                    |->{10}                                              [       MAYBE        ]
                    |
                    `->{11}                                              [     inherited      ]
                        |
                        `->{10}                                          [         NA         ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                `->{8}                                                   [     inherited      ]
                    |
                    |->{10}                                              [         NA         ]
                    |
                    `->{11}                                              [     inherited      ]
                        |
                        `->{10}                                          [         NA         ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                sp(x1) = [0] x1 + [0]
                g(x1) = [0] x1 + [0]
                pair(x1, x2) = [0] x1 + [0] x2 + [0]
                np(x1) = [0] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                sp^#(x1) = [0] x1 + [0]
                g^#(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                np^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1, x2) = [0] x1 + [0] x2 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {fib^#(0()) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(fib^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                fib^#(x1) = [1] x1 + [7]
                c_0() = [1]
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                sp(x1) = [0] x1 + [0]
                g(x1) = [0] x1 + [0]
                pair(x1, x2) = [0] x1 + [0] x2 + [0]
                np(x1) = [0] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                sp^#(x1) = [0] x1 + [0]
                g^#(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                np^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1, x2) = [0] x1 + [0] x2 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {fib^#(s(0())) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(fib^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                s(x1) = [0] x1 + [2]
                fib^#(x1) = [2] x1 + [7]
                c_1() = [0]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                sp(x1) = [0] x1 + [0]
                g(x1) = [0] x1 + [0]
                pair(x1, x2) = [0] x1 + [0] x2 + [0]
                np(x1) = [0] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                sp^#(x1) = [0] x1 + [0]
                g^#(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                np^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1, x2) = [0] x1 + [0] x2 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {fib^#(s(s(0()))) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(fib^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                s(x1) = [0] x1 + [0]
                fib^#(x1) = [0] x1 + [7]
                c_2() = [0]
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{8}->{11}->{10}.
           
           * Path {4}->{8}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{8}->{11}->{10}.
           
           * Path {4}->{8}->{10}: NA
             -----------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{8}->{11}: inherited
             ------------------------------
             
             This path is subsumed by the proof of path {4}->{8}->{11}->{10}.
           
           * Path {4}->{8}->{11}->{10}: NA
             -----------------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                sp(x1) = [0] x1 + [0]
                g(x1) = [0] x1 + [0]
                pair(x1, x2) = [0] x1 + [0] x2 + [0]
                np(x1) = [0] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                sp^#(x1) = [0] x1 + [0]
                g^#(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                np^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1, x2) = [0] x1 + [0] x2 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(0()) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                g^#(x1) = [1] x1 + [7]
                c_4() = [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fib) = {}, Uargs(s) = {}, Uargs(sp) = {}, Uargs(g) = {},
                 Uargs(pair) = {}, Uargs(np) = {}, Uargs(+) = {}, Uargs(fib^#) = {},
                 Uargs(c_3) = {}, Uargs(sp^#) = {}, Uargs(g^#) = {},
                 Uargs(c_6) = {}, Uargs(np^#) = {}, Uargs(c_7) = {},
                 Uargs(+^#) = {}, Uargs(c_8) = {}, Uargs(c_9) = {}, Uargs(c_10) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fib(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                sp(x1) = [0] x1 + [0]
                g(x1) = [0] x1 + [0]
                pair(x1, x2) = [0] x1 + [0] x2 + [0]
                np(x1) = [0] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                fib^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                sp^#(x1) = [0] x1 + [0]
                g^#(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                np^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1, x2) = [0] x1 + [0] x2 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {g^#(s(0())) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(g^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                s(x1) = [0] x1 + [2]
                g^#(x1) = [2] x1 + [7]
                c_5() = [0]
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{9}->{11}->{10}.
           
           * Path {7}->{9}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {7}->{9}->{11}->{10}.
           
           * Path {7}->{9}->{10}: MAYBE
             --------------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  np^#(pair(x, y)) -> c_8(+^#(x, y), x)
                  , g^#(s(x)) -> c_6(np^#(g(x)))
                  , +^#(x, 0()) -> c_9(x)
                  , g(0()) -> pair(s(0()), 0())
                  , g(s(0())) -> pair(s(0()), s(0()))
                  , g(s(x)) -> np(g(x))
                  , np(pair(x, y)) -> pair(+(x, y), x)
                  , +(x, 0()) -> x
                  , +(x, s(y)) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {7}->{9}->{11}: inherited
             ------------------------------
             
             This path is subsumed by the proof of path {7}->{9}->{11}->{10}.
           
           * Path {7}->{9}->{11}->{10}: NA
             -----------------------------
             
             The usable rules for this path are:
             
               {  g(0()) -> pair(s(0()), 0())
                , g(s(0())) -> pair(s(0()), s(0()))
                , g(s(x)) -> np(g(x))
                , np(pair(x, y)) -> pair(+(x, y), x)
                , +(x, 0()) -> x
                , +(x, s(y)) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool pair1rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 2.27

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  fib(0()) -> 0()
     , fib(s(0())) -> s(0())
     , fib(s(s(0()))) -> s(0())
     , fib(s(s(x))) -> sp(g(x))
     , g(0()) -> pair(s(0()), 0())
     , g(s(0())) -> pair(s(0()), s(0()))
     , g(s(x)) -> np(g(x))
     , sp(pair(x, y)) -> +(x, y)
     , np(pair(x, y)) -> pair(+(x, y), x)
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair2rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 2.27

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  fib(0()) -> 0()
     , fib(s(0())) -> s(0())
     , fib(s(s(0()))) -> s(0())
     , fib(s(s(x))) -> sp(g(x))
     , g(0()) -> pair(s(0()), 0())
     , g(s(0())) -> pair(s(0()), s(0()))
     , g(s(x)) -> np(g(x))
     , sp(pair(x, y)) -> +(x, y)
     , np(pair(x, y)) -> pair(+(x, y), x)
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair2 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3irc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 2.27

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  fib(0()) -> 0()
     , fib(s(0())) -> s(0())
     , fib(s(s(0()))) -> s(0())
     , fib(s(s(x))) -> sp(g(x))
     , g(0()) -> pair(s(0()), 0())
     , g(s(0())) -> pair(s(0()), s(0()))
     , g(s(x)) -> np(g(x))
     , sp(pair(x, y)) -> +(x, y)
     , np(pair(x, y)) -> pair(+(x, y), x)
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 2.27

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  fib(0()) -> 0()
     , fib(s(0())) -> s(0())
     , fib(s(s(0()))) -> s(0())
     , fib(s(s(x))) -> sp(g(x))
     , g(0()) -> pair(s(0()), 0())
     , g(s(0())) -> pair(s(0()), s(0()))
     , g(s(x)) -> np(g(x))
     , sp(pair(x, y)) -> +(x, y)
     , np(pair(x, y)) -> pair(+(x, y), x)
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 2.27

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  fib(0()) -> 0()
     , fib(s(0())) -> s(0())
     , fib(s(s(0()))) -> s(0())
     , fib(s(s(x))) -> sp(g(x))
     , g(0()) -> pair(s(0()), 0())
     , g(s(0())) -> pair(s(0()), s(0()))
     , g(s(x)) -> np(g(x))
     , sp(pair(x, y)) -> +(x, y)
     , np(pair(x, y)) -> pair(+(x, y), x)
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool tup3irc

Execution Time60.115536ms
Answer
TIMEOUT
InputSK90 2.27

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  fib(0()) -> 0()
     , fib(s(0())) -> s(0())
     , fib(s(s(0()))) -> s(0())
     , fib(s(s(x))) -> sp(g(x))
     , g(0()) -> pair(s(0()), 0())
     , g(s(0())) -> pair(s(0()), s(0()))
     , g(s(x)) -> np(g(x))
     , sp(pair(x, y)) -> +(x, y)
     , np(pair(x, y)) -> pair(+(x, y), x)
     , +(x, 0()) -> x
     , +(x, s(y)) -> s(+(x, y))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: TIMEOUT

Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..