Tool CaT
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.31 |
---|
stdout:
YES(?,O(n^1))
Problem:
not(true()) -> false()
not(false()) -> true()
odd(0()) -> false()
odd(s(x)) -> not(odd(x))
+(x,0()) -> x
+(x,s(y)) -> s(+(x,y))
+(s(x),y) -> s(+(x,y))
Proof:
Bounds Processor:
bound: 2
enrichment: match
automaton:
final states: {7,6,5}
transitions:
s1(10) -> 10,7
+1(3,1) -> 10*
+1(3,3) -> 10*
+1(4,2) -> 10*
+1(4,4) -> 10*
+1(1,2) -> 10*
+1(1,4) -> 10*
+1(2,1) -> 10*
+1(2,3) -> 10*
+1(3,2) -> 10*
+1(3,4) -> 10*
+1(4,1) -> 10*
+1(4,3) -> 10*
+1(1,1) -> 10*
+1(1,3) -> 10*
+1(2,2) -> 10*
+1(2,4) -> 10*
not1(8) -> 8,6
odd1(2) -> 8*
odd1(4) -> 8*
odd1(1) -> 8*
odd1(3) -> 8*
false1() -> 8,6,5
true1() -> 5*
true2() -> 6,8
false2() -> 6,8
not0(2) -> 5*
not0(4) -> 5*
not0(1) -> 5*
not0(3) -> 5*
true0() -> 1*
false0() -> 2*
odd0(2) -> 6*
odd0(4) -> 6*
odd0(1) -> 6*
odd0(3) -> 6*
00() -> 3*
s0(2) -> 4*
s0(4) -> 4*
s0(1) -> 4*
s0(3) -> 4*
+0(3,1) -> 7*
+0(3,3) -> 7*
+0(4,2) -> 7*
+0(4,4) -> 7*
+0(1,2) -> 7*
+0(1,4) -> 7*
+0(2,1) -> 7*
+0(2,3) -> 7*
+0(3,2) -> 7*
+0(3,4) -> 7*
+0(4,1) -> 7*
+0(4,3) -> 7*
+0(1,1) -> 7*
+0(1,3) -> 7*
+0(2,2) -> 7*
+0(2,4) -> 7*
1 -> 10,7
2 -> 10,7
3 -> 10,7
4 -> 10,7
problem:
QedTool IRC1
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.31 |
---|
stdout:
YES(?,O(n^1))
Tool IRC2
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.31 |
---|
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ not(true()) -> false()
, not(false()) -> true()
, odd(0()) -> false()
, odd(s(x)) -> not(odd(x))
, +(x, 0()) -> x
, +(x, s(y)) -> s(+(x, y))
, +(s(x), y) -> s(+(x, y))}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ not(true()) -> false()
, not(false()) -> true()
, odd(0()) -> false()
, odd(s(x)) -> not(odd(x))
, +(x, 0()) -> x
, +(x, s(y)) -> s(+(x, y))
, +(s(x), y) -> s(+(x, y))}
Proof Output:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ not_0(2) -> 1
, not_1(3) -> 1
, not_1(3) -> 3
, true_0() -> 1
, true_0() -> 2
, true_0() -> 4
, true_1() -> 1
, true_2() -> 1
, true_2() -> 3
, false_0() -> 1
, false_0() -> 2
, false_0() -> 4
, false_1() -> 1
, false_1() -> 3
, false_2() -> 1
, false_2() -> 3
, odd_0(2) -> 1
, odd_1(2) -> 3
, 0_0() -> 1
, 0_0() -> 2
, 0_0() -> 4
, s_0(2) -> 1
, s_0(2) -> 2
, s_0(2) -> 4
, s_1(4) -> 1
, s_1(4) -> 4
, +_0(2, 2) -> 1
, +_1(2, 2) -> 4}Tool RC1
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.31 |
---|
stdout:
YES(?,O(n^1))
Tool RC2
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.31 |
---|
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ not(true()) -> false()
, not(false()) -> true()
, odd(0()) -> false()
, odd(s(x)) -> not(odd(x))
, +(x, 0()) -> x
, +(x, s(y)) -> s(+(x, y))
, +(s(x), y) -> s(+(x, y))}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ not(true()) -> false()
, not(false()) -> true()
, odd(0()) -> false()
, odd(s(x)) -> not(odd(x))
, +(x, 0()) -> x
, +(x, s(y)) -> s(+(x, y))
, +(s(x), y) -> s(+(x, y))}
Proof Output:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ not_0(2) -> 1
, not_1(3) -> 1
, not_1(3) -> 3
, true_0() -> 1
, true_0() -> 2
, true_0() -> 4
, true_1() -> 1
, true_2() -> 1
, true_2() -> 3
, false_0() -> 1
, false_0() -> 2
, false_0() -> 4
, false_1() -> 1
, false_1() -> 3
, false_2() -> 1
, false_2() -> 3
, odd_0(2) -> 1
, odd_1(2) -> 3
, 0_0() -> 1
, 0_0() -> 2
, 0_0() -> 4
, s_0(2) -> 1
, s_0(2) -> 2
, s_0(2) -> 4
, s_1(4) -> 1
, s_1(4) -> 4
, +_0(2, 2) -> 1
, +_1(2, 2) -> 4}Tool pair1rc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.31 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, odd(0()) -> false()
, odd(s(x)) -> not(odd(x))
, +(x, 0()) -> x
, +(x, s(y)) -> s(+(x, y))
, +(s(x), y) -> s(+(x, y))}
StartTerms: basic terms
Strategy: none
Certificate: YES(?,O(n^1))
Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
The processor is not applicable, reason is:
Input problem is not restricted to innermost rewriting
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, odd(0()) -> false()
, odd(s(x)) -> not(odd(x))
, +(x, 0()) -> x
, +(x, s(y)) -> s(+(x, y))
, +(s(x), y) -> s(+(x, y))}
StartTerms: basic terms
Strategy: none
1) 'Fastest' proved the goal fastest:
'Fastest' proved the goal fastest:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the goal fastest:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ not_0(2) -> 1
, not_1(3) -> 1
, not_1(3) -> 3
, true_0() -> 1
, true_0() -> 2
, true_0() -> 4
, true_1() -> 1
, true_2() -> 1
, true_2() -> 3
, false_0() -> 1
, false_0() -> 2
, false_0() -> 4
, false_1() -> 1
, false_1() -> 3
, false_2() -> 1
, false_2() -> 3
, odd_0(2) -> 1
, odd_1(2) -> 3
, 0_0() -> 1
, 0_0() -> 2
, 0_0() -> 4
, s_0(2) -> 1
, s_0(2) -> 2
, s_0(2) -> 4
, s_1(4) -> 1
, s_1(4) -> 4
, +_0(2, 2) -> 1
, +_1(2, 2) -> 4}
Hurray, we answered YES(?,O(n^1))Tool pair2rc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.31 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, odd(0()) -> false()
, odd(s(x)) -> not(odd(x))
, +(x, 0()) -> x
, +(x, s(y)) -> s(+(x, y))
, +(s(x), y) -> s(+(x, y))}
StartTerms: basic terms
Strategy: none
Certificate: YES(?,O(n^1))
Application of 'pair2 (timeout of 60.0 seconds)':
-------------------------------------------------
The processor is not applicable, reason is:
Input problem is not restricted to innermost rewriting
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, odd(0()) -> false()
, odd(s(x)) -> not(odd(x))
, +(x, 0()) -> x
, +(x, s(y)) -> s(+(x, y))
, +(s(x), y) -> s(+(x, y))}
StartTerms: basic terms
Strategy: none
1) 'Fastest' proved the goal fastest:
'Fastest' proved the goal fastest:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the goal fastest:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ not_0(2) -> 1
, not_1(3) -> 1
, not_1(3) -> 3
, true_0() -> 1
, true_0() -> 2
, true_0() -> 4
, true_1() -> 1
, true_2() -> 1
, true_2() -> 3
, false_0() -> 1
, false_0() -> 2
, false_0() -> 4
, false_1() -> 1
, false_1() -> 3
, false_2() -> 1
, false_2() -> 3
, odd_0(2) -> 1
, odd_1(2) -> 3
, 0_0() -> 1
, 0_0() -> 2
, 0_0() -> 4
, s_0(2) -> 1
, s_0(2) -> 2
, s_0(2) -> 4
, s_1(4) -> 1
, s_1(4) -> 4
, +_0(2, 2) -> 1
, +_1(2, 2) -> 4}
Hurray, we answered YES(?,O(n^1))Tool pair3irc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.31 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, odd(0()) -> false()
, odd(s(x)) -> not(odd(x))
, +(x, 0()) -> x
, +(x, s(y)) -> s(+(x, y))
, +(s(x), y) -> s(+(x, y))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
The input problem contains no overlaps that give rise to inapplicable rules.
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, odd(0()) -> false()
, odd(s(x)) -> not(odd(x))
, +(x, 0()) -> x
, +(x, s(y)) -> s(+(x, y))
, +(s(x), y) -> s(+(x, y))}
StartTerms: basic terms
Strategy: innermost
1) 'Fastest' proved the goal fastest:
'Fastest' proved the goal fastest:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the goal fastest:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ not_0(2) -> 1
, not_1(3) -> 1
, not_1(3) -> 3
, true_0() -> 1
, true_0() -> 2
, true_0() -> 4
, true_1() -> 1
, true_2() -> 1
, true_2() -> 3
, false_0() -> 1
, false_0() -> 2
, false_0() -> 4
, false_1() -> 1
, false_1() -> 3
, false_2() -> 1
, false_2() -> 3
, odd_0(2) -> 1
, odd_1(2) -> 3
, 0_0() -> 1
, 0_0() -> 2
, 0_0() -> 4
, s_0(2) -> 1
, s_0(2) -> 2
, s_0(2) -> 4
, s_1(4) -> 1
, s_1(4) -> 4
, +_0(2, 2) -> 1
, +_1(2, 2) -> 4}
Hurray, we answered YES(?,O(n^1))Tool pair3rc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.31 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, odd(0()) -> false()
, odd(s(x)) -> not(odd(x))
, +(x, 0()) -> x
, +(x, s(y)) -> s(+(x, y))
, +(s(x), y) -> s(+(x, y))}
StartTerms: basic terms
Strategy: none
Certificate: YES(?,O(n^1))
Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
The processor is not applicable, reason is:
Input problem is not restricted to innermost rewriting
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, odd(0()) -> false()
, odd(s(x)) -> not(odd(x))
, +(x, 0()) -> x
, +(x, s(y)) -> s(+(x, y))
, +(s(x), y) -> s(+(x, y))}
StartTerms: basic terms
Strategy: none
1) 'Fastest' proved the goal fastest:
'Fastest' proved the goal fastest:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the goal fastest:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ not_0(2) -> 1
, not_1(3) -> 1
, not_1(3) -> 3
, true_0() -> 1
, true_0() -> 2
, true_0() -> 4
, true_1() -> 1
, true_2() -> 1
, true_2() -> 3
, false_0() -> 1
, false_0() -> 2
, false_0() -> 4
, false_1() -> 1
, false_1() -> 3
, false_2() -> 1
, false_2() -> 3
, odd_0(2) -> 1
, odd_1(2) -> 3
, 0_0() -> 1
, 0_0() -> 2
, 0_0() -> 4
, s_0(2) -> 1
, s_0(2) -> 2
, s_0(2) -> 4
, s_1(4) -> 1
, s_1(4) -> 4
, +_0(2, 2) -> 1
, +_1(2, 2) -> 4}
Hurray, we answered YES(?,O(n^1))Tool rc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.31 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, odd(0()) -> false()
, odd(s(x)) -> not(odd(x))
, +(x, 0()) -> x
, +(x, s(y)) -> s(+(x, y))
, +(s(x), y) -> s(+(x, y))}
StartTerms: basic terms
Strategy: none
Certificate: YES(?,O(n^1))
Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
'Fastest' proved the goal fastest:
'Fastest' proved the goal fastest:
'Bounds with minimal-enrichment and initial automaton 'match' (timeout of 100.0 seconds)' proved the goal fastest:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ not_0(2) -> 1
, not_1(3) -> 1
, not_1(3) -> 3
, true_0() -> 1
, true_0() -> 2
, true_0() -> 4
, true_1() -> 1
, true_2() -> 1
, true_2() -> 3
, false_0() -> 1
, false_0() -> 2
, false_0() -> 4
, false_1() -> 1
, false_1() -> 3
, false_2() -> 1
, false_2() -> 3
, odd_0(2) -> 1
, odd_1(2) -> 3
, 0_0() -> 1
, 0_0() -> 2
, 0_0() -> 4
, s_0(2) -> 1
, s_0(2) -> 2
, s_0(2) -> 4
, s_1(4) -> 1
, s_1(4) -> 4
, +_0(2, 2) -> 1
, +_1(2, 2) -> 4}
Hurray, we answered YES(?,O(n^1))Tool tup3irc
Execution Time | 9.572601e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.31 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, odd(0()) -> false()
, odd(s(x)) -> not(odd(x))
, +(x, 0()) -> x
, +(x, s(y)) -> s(+(x, y))
, +(s(x), y) -> s(+(x, y))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
The input problem contains no overlaps that give rise to inapplicable rules.
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ not(true()) -> false()
, not(false()) -> true()
, odd(0()) -> false()
, odd(s(x)) -> not(odd(x))
, +(x, 0()) -> x
, +(x, s(y)) -> s(+(x, y))
, +(s(x), y) -> s(+(x, y))}
StartTerms: basic terms
Strategy: innermost
1) 'Fastest' proved the goal fastest:
'Fastest' proved the goal fastest:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the goal fastest:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ not_0(2) -> 1
, not_1(3) -> 1
, not_1(3) -> 3
, true_0() -> 1
, true_0() -> 2
, true_0() -> 4
, true_1() -> 1
, true_2() -> 1
, true_2() -> 3
, false_0() -> 1
, false_0() -> 2
, false_0() -> 4
, false_1() -> 1
, false_1() -> 3
, false_2() -> 1
, false_2() -> 3
, odd_0(2) -> 1
, odd_1(2) -> 3
, 0_0() -> 1
, 0_0() -> 2
, 0_0() -> 4
, s_0(2) -> 1
, s_0(2) -> 2
, s_0(2) -> 4
, s_1(4) -> 1
, s_1(4) -> 4
, +_0(2, 2) -> 1
, +_1(2, 2) -> 4}
Hurray, we answered YES(?,O(n^1))