Tool CaT
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.36 |
---|
stdout:
YES(?,O(n^1))
Problem:
implies(not(x),y) -> or(x,y)
implies(not(x),or(y,z)) -> implies(y,or(x,z))
implies(x,or(y,z)) -> or(y,implies(x,z))
Proof:
Complexity Transformation Processor:
strict:
implies(not(x),y) -> or(x,y)
implies(not(x),or(y,z)) -> implies(y,or(x,z))
implies(x,or(y,z)) -> or(y,implies(x,z))
weak:
Bounds Processor:
bound: 1
enrichment: match
automaton:
final states: {3}
transitions:
or1(1,2) -> 3*
or1(2,1) -> 3*
or1(1,1) -> 3*
or1(2,2) -> 3*
implies0(1,2) -> 3*
implies0(2,1) -> 3*
implies0(1,1) -> 3*
implies0(2,2) -> 3*
not0(2) -> 1*
not0(1) -> 1*
or0(1,2) -> 2*
or0(2,1) -> 2*
or0(2,3) -> 3*
or0(1,1) -> 2*
or0(1,3) -> 3*
or0(2,2) -> 2*
problem:
strict:
implies(not(x),or(y,z)) -> implies(y,or(x,z))
implies(x,or(y,z)) -> or(y,implies(x,z))
weak:
implies(not(x),y) -> or(x,y)
Bounds Processor:
bound: 1
enrichment: match
automaton:
final states: {3}
transitions:
or1(1,2) -> 8,4
or1(1,4) -> 8,3
or1(1,8) -> 8,3
or1(2,1) -> 8,7
or1(2,7) -> 8,3
or1(2,9) -> 8,3
or1(1,1) -> 8,4
or1(1,7) -> 8,3
or1(1,9) -> 8,3
or1(2,2) -> 8,4
or1(2,4) -> 8,3
or1(2,8) -> 8,3
implies1(1,2) -> 8*
implies1(1,4) -> 8,3
implies1(2,1) -> 9*
implies1(2,7) -> 8,3
implies1(1,1) -> 8*
implies1(1,7) -> 8,3
implies1(2,2) -> 8*
implies1(2,4) -> 8,3
implies0(1,2) -> 3*
implies0(2,1) -> 3*
implies0(1,1) -> 3*
implies0(2,2) -> 3*
not0(2) -> 1*
not0(1) -> 1*
or0(1,2) -> 3,2
or0(2,1) -> 3,2
or0(2,3) -> 3*
or0(1,1) -> 3,2
or0(1,3) -> 3*
or0(2,2) -> 3,2
problem:
strict:
implies(x,or(y,z)) -> or(y,implies(x,z))
weak:
implies(not(x),or(y,z)) -> implies(y,or(x,z))
implies(not(x),y) -> or(x,y)
Bounds Processor:
bound: 2
enrichment: match
automaton:
final states: {3}
transitions:
or1(1,2) -> 3,9,4,1
or1(1,4) -> 11,9,4,7,3
or1(2,1) -> 3,9,4,1
or1(2,7) -> 11,7,3
or1(1,1) -> 3,9,4,1
or1(1,7) -> 11,7,3
or1(2,2) -> 3,9,4,2
or1(2,4) -> 11,4,7,3
implies1(1,2) -> 3,4
implies1(2,1) -> 3,4
implies1(1,1) -> 9,3,4,7
implies1(2,2) -> 3,4
or2(2,9) -> 3,9,4
or2(2,11) -> 9,3,4,11,7
or2(1,9) -> 3,11,7,4,9
or2(1,11) -> 9,3,11,7,4
implies2(1,2) -> 9*
implies2(2,1) -> 9*
implies2(1,1) -> 11*
implies2(2,2) -> 9*
implies0(1,2) -> 3*
implies0(2,1) -> 3*
implies0(1,1) -> 3*
implies0(2,2) -> 3*
not0(2) -> 2*
not0(1) -> 2*
or0(1,2) -> 3,1
or0(2,1) -> 3,1
or0(1,1) -> 3,1
or0(2,2) -> 3,1
problem:
strict:
weak:
implies(x,or(y,z)) -> or(y,implies(x,z))
implies(not(x),or(y,z)) -> implies(y,or(x,z))
implies(not(x),y) -> or(x,y)
QedTool IRC1
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.36 |
---|
stdout:
YES(?,O(n^1))
Tool IRC2
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.36 |
---|
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ implies(not(x), y) -> or(x, y)
, implies(not(x), or(y, z)) -> implies(y, or(x, z))
, implies(x, or(y, z)) -> or(y, implies(x, z))}
Proof Output:
'matrix-interpretation of dimension 1' proved the best result:
Details:
--------
'matrix-interpretation of dimension 1' succeeded with the following output:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ implies(not(x), y) -> or(x, y)
, implies(not(x), or(y, z)) -> implies(y, or(x, z))
, implies(x, or(y, z)) -> or(y, implies(x, z))}
Proof Output:
The following argument positions are usable:
Uargs(implies) = {}, Uargs(not) = {}, Uargs(or) = {2}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
implies(x1, x2) = [2] x1 + [2] x2 + [0]
not(x1) = [1] x1 + [3]
or(x1, x2) = [1] x1 + [1] x2 + [1]Tool RC1
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.36 |
---|
stdout:
YES(?,O(n^1))
Tool RC2
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.36 |
---|
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ implies(not(x), y) -> or(x, y)
, implies(not(x), or(y, z)) -> implies(y, or(x, z))
, implies(x, or(y, z)) -> or(y, implies(x, z))}
Proof Output:
'matrix-interpretation of dimension 1' proved the best result:
Details:
--------
'matrix-interpretation of dimension 1' succeeded with the following output:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ implies(not(x), y) -> or(x, y)
, implies(not(x), or(y, z)) -> implies(y, or(x, z))
, implies(x, or(y, z)) -> or(y, implies(x, z))}
Proof Output:
The following argument positions are usable:
Uargs(implies) = {}, Uargs(not) = {}, Uargs(or) = {2}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
implies(x1, x2) = [2] x1 + [2] x2 + [0]
not(x1) = [1] x1 + [3]
or(x1, x2) = [1] x1 + [1] x2 + [1]Tool pair1rc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.36 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ implies(not(x), y) -> or(x, y)
, implies(not(x), or(y, z)) -> implies(y, or(x, z))
, implies(x, or(y, z)) -> or(y, implies(x, z))}
StartTerms: basic terms
Strategy: none
Certificate: YES(?,O(n^1))
Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
The processor is not applicable, reason is:
Input problem is not restricted to innermost rewriting
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ implies(not(x), y) -> or(x, y)
, implies(not(x), or(y, z)) -> implies(y, or(x, z))
, implies(x, or(y, z)) -> or(y, implies(x, z))}
StartTerms: basic terms
Strategy: none
1) 'Fastest' proved the goal fastest:
'Sequentially' proved the goal fastest:
'Fastest' succeeded:
'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' proved the goal fastest:
The following argument positions are usable:
Uargs(implies) = {}, Uargs(not) = {}, Uargs(or) = {2}
We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
Interpretation Functions:
implies(x1, x2) = [2 0] x1 + [2 0] x2 + [0]
[0 0] [0 0] [0]
not(x1) = [1 0] x1 + [2]
[0 0] [0]
or(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
[0 0] [0 0] [0]
Hurray, we answered YES(?,O(n^1))Tool pair2rc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.36 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ implies(not(x), y) -> or(x, y)
, implies(not(x), or(y, z)) -> implies(y, or(x, z))
, implies(x, or(y, z)) -> or(y, implies(x, z))}
StartTerms: basic terms
Strategy: none
Certificate: YES(?,O(n^1))
Application of 'pair2 (timeout of 60.0 seconds)':
-------------------------------------------------
The processor is not applicable, reason is:
Input problem is not restricted to innermost rewriting
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ implies(not(x), y) -> or(x, y)
, implies(not(x), or(y, z)) -> implies(y, or(x, z))
, implies(x, or(y, z)) -> or(y, implies(x, z))}
StartTerms: basic terms
Strategy: none
1) 'Fastest' proved the goal fastest:
'Sequentially' proved the goal fastest:
'Fastest' succeeded:
'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' proved the goal fastest:
The following argument positions are usable:
Uargs(implies) = {}, Uargs(not) = {}, Uargs(or) = {2}
We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
Interpretation Functions:
implies(x1, x2) = [2 0] x1 + [2 0] x2 + [0]
[0 0] [0 0] [0]
not(x1) = [1 0] x1 + [2]
[0 0] [0]
or(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
[0 0] [0 0] [0]
Hurray, we answered YES(?,O(n^1))Tool pair3irc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.36 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ implies(not(x), y) -> or(x, y)
, implies(not(x), or(y, z)) -> implies(y, or(x, z))
, implies(x, or(y, z)) -> or(y, implies(x, z))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
The input problem contains no overlaps that give rise to inapplicable rules.
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ implies(not(x), y) -> or(x, y)
, implies(not(x), or(y, z)) -> implies(y, or(x, z))
, implies(x, or(y, z)) -> or(y, implies(x, z))}
StartTerms: basic terms
Strategy: innermost
1) 'Fastest' proved the goal fastest:
'Sequentially' proved the goal fastest:
'Fastest' succeeded:
'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' proved the goal fastest:
The following argument positions are usable:
Uargs(implies) = {}, Uargs(not) = {}, Uargs(or) = {2}
We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
Interpretation Functions:
implies(x1, x2) = [2 0] x1 + [2 0] x2 + [0]
[0 0] [0 0] [0]
not(x1) = [1 0] x1 + [2]
[0 0] [0]
or(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
[0 0] [0 0] [0]
Hurray, we answered YES(?,O(n^1))Tool pair3rc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.36 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ implies(not(x), y) -> or(x, y)
, implies(not(x), or(y, z)) -> implies(y, or(x, z))
, implies(x, or(y, z)) -> or(y, implies(x, z))}
StartTerms: basic terms
Strategy: none
Certificate: YES(?,O(n^1))
Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
The processor is not applicable, reason is:
Input problem is not restricted to innermost rewriting
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ implies(not(x), y) -> or(x, y)
, implies(not(x), or(y, z)) -> implies(y, or(x, z))
, implies(x, or(y, z)) -> or(y, implies(x, z))}
StartTerms: basic terms
Strategy: none
1) 'Fastest' proved the goal fastest:
'Sequentially' proved the goal fastest:
'Fastest' succeeded:
'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' proved the goal fastest:
The following argument positions are usable:
Uargs(implies) = {}, Uargs(not) = {}, Uargs(or) = {2}
We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
Interpretation Functions:
implies(x1, x2) = [2 0] x1 + [2 0] x2 + [0]
[0 0] [0 0] [0]
not(x1) = [1 0] x1 + [2]
[0 0] [0]
or(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
[0 0] [0 0] [0]
Hurray, we answered YES(?,O(n^1))Tool rc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.36 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ implies(not(x), y) -> or(x, y)
, implies(not(x), or(y, z)) -> implies(y, or(x, z))
, implies(x, or(y, z)) -> or(y, implies(x, z))}
StartTerms: basic terms
Strategy: none
Certificate: YES(?,O(n^1))
Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
'Fastest' proved the goal fastest:
'Sequentially' proved the goal fastest:
'Fastest' succeeded:
'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' proved the goal fastest:
The following argument positions are usable:
Uargs(implies) = {}, Uargs(not) = {}, Uargs(or) = {2}
We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
Interpretation Functions:
implies(x1, x2) = [2 0] x1 + [2 0] x2 + [0]
[0 0] [0 0] [0]
not(x1) = [1 0] x1 + [2]
[0 0] [0]
or(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
[0 0] [0 0] [0]
Hurray, we answered YES(?,O(n^1))Tool tup3irc
Execution Time | 0.8735912ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.36 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ implies(not(x), y) -> or(x, y)
, implies(not(x), or(y, z)) -> implies(y, or(x, z))
, implies(x, or(y, z)) -> or(y, implies(x, z))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
The input problem contains no overlaps that give rise to inapplicable rules.
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ implies(not(x), y) -> or(x, y)
, implies(not(x), or(y, z)) -> implies(y, or(x, z))
, implies(x, or(y, z)) -> or(y, implies(x, z))}
StartTerms: basic terms
Strategy: innermost
1) 'Fastest' proved the goal fastest:
'Sequentially' proved the goal fastest:
'Fastest' succeeded:
'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' proved the goal fastest:
The following argument positions are usable:
Uargs(implies) = {}, Uargs(not) = {}, Uargs(or) = {2}
We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
Interpretation Functions:
implies(x1, x2) = [2 0] x1 + [2 0] x2 + [0]
[0 0] [0 0] [0]
not(x1) = [1 0] x1 + [2]
[0 0] [0]
or(x1, x2) = [1 0] x1 + [1 0] x2 + [1]
[0 0] [0 0] [0]
Hurray, we answered YES(?,O(n^1))