Tool CaT
Execution Time | Unknown |
---|
Answer | MAYBE |
---|
Input | SK90 2.44 |
---|
stdout:
MAYBE
Problem:
del(.(x,.(y,z))) -> f(=(x,y),x,y,z)
f(true(),x,y,z) -> del(.(y,z))
f(false(),x,y,z) -> .(x,del(.(y,z)))
=(nil(),nil()) -> true()
=(.(x,y),nil()) -> false()
=(nil(),.(y,z)) -> false()
=(.(x,y),.(u(),v())) -> and(=(x,u()),=(y,v()))
Proof:
OpenTool IRC1
Execution Time | Unknown |
---|
Answer | MAYBE |
---|
Input | SK90 2.44 |
---|
stdout:
MAYBE
Tool IRC2
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.44 |
---|
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
, f(true(), x, y, z) -> del(.(y, z))
, f(false(), x, y, z) -> .(x, del(.(y, z)))
, =(nil(), nil()) -> true()
, =(.(x, y), nil()) -> false()
, =(nil(), .(y, z)) -> false()
, =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))}
Proof Output:
'matrix-interpretation of dimension 1' proved the best result:
Details:
--------
'matrix-interpretation of dimension 1' succeeded with the following output:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
, f(true(), x, y, z) -> del(.(y, z))
, f(false(), x, y, z) -> .(x, del(.(y, z)))
, =(nil(), nil()) -> true()
, =(.(x, y), nil()) -> false()
, =(nil(), .(y, z)) -> false()
, =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))}
Proof Output:
The following argument positions are usable:
Uargs(del) = {}, Uargs(.) = {2}, Uargs(f) = {1}, Uargs(=) = {},
Uargs(and) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
del(x1) = [5] x1 + [0]
.(x1, x2) = [1] x1 + [1] x2 + [1]
f(x1, x2, x3, x4) = [2] x1 + [1] x2 + [5] x3 + [5] x4 + [3]
=(x1, x2) = [2] x1 + [0] x2 + [1]
true() = [2]
false() = [2]
nil() = [2]
u() = [0]
v() = [0]
and(x1, x2) = [0] x1 + [0] x2 + [1]Tool RC1
Execution Time | Unknown |
---|
Answer | MAYBE |
---|
Input | SK90 2.44 |
---|
stdout:
MAYBE
Tool RC2
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.44 |
---|
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
, f(true(), x, y, z) -> del(.(y, z))
, f(false(), x, y, z) -> .(x, del(.(y, z)))
, =(nil(), nil()) -> true()
, =(.(x, y), nil()) -> false()
, =(nil(), .(y, z)) -> false()
, =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))}
Proof Output:
'matrix-interpretation of dimension 1' proved the best result:
Details:
--------
'matrix-interpretation of dimension 1' succeeded with the following output:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
, f(true(), x, y, z) -> del(.(y, z))
, f(false(), x, y, z) -> .(x, del(.(y, z)))
, =(nil(), nil()) -> true()
, =(.(x, y), nil()) -> false()
, =(nil(), .(y, z)) -> false()
, =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))}
Proof Output:
The following argument positions are usable:
Uargs(del) = {}, Uargs(.) = {2}, Uargs(f) = {1}, Uargs(=) = {},
Uargs(and) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
del(x1) = [5] x1 + [0]
.(x1, x2) = [1] x1 + [1] x2 + [1]
f(x1, x2, x3, x4) = [2] x1 + [1] x2 + [5] x3 + [5] x4 + [3]
=(x1, x2) = [2] x1 + [0] x2 + [1]
true() = [2]
false() = [2]
nil() = [2]
u() = [0]
v() = [0]
and(x1, x2) = [0] x1 + [0] x2 + [1]Tool pair1rc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.44 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
, f(true(), x, y, z) -> del(.(y, z))
, f(false(), x, y, z) -> .(x, del(.(y, z)))
, =(nil(), nil()) -> true()
, =(.(x, y), nil()) -> false()
, =(nil(), .(y, z)) -> false()
, =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))}
StartTerms: basic terms
Strategy: none
Certificate: YES(?,O(n^1))
Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
The processor is not applicable, reason is:
Input problem is not restricted to innermost rewriting
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
, f(true(), x, y, z) -> del(.(y, z))
, f(false(), x, y, z) -> .(x, del(.(y, z)))
, =(nil(), nil()) -> true()
, =(.(x, y), nil()) -> false()
, =(nil(), .(y, z)) -> false()
, =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))}
StartTerms: basic terms
Strategy: none
1) 'Fastest' proved the goal fastest:
'Sequentially' proved the goal fastest:
'Fastest' succeeded:
'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' proved the goal fastest:
The following argument positions are usable:
Uargs(del) = {}, Uargs(.) = {2}, Uargs(f) = {1}, Uargs(=) = {},
Uargs(and) = {}
We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
Interpretation Functions:
del(x1) = [2 0] x1 + [0]
[0 1] [0]
.(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
[0 0] [0 0] [1]
f(x1, x2, x3, x4) = [1 2] x1 + [1 1] x2 + [2 2] x3 + [2 0] x4 + [1]
[0 0] [0 0] [0 0] [0 0] [1]
=(x1, x2) = [1 1] x1 + [0 0] x2 + [0]
[0 0] [0 0] [1]
true() = [0]
[1]
false() = [1]
[1]
nil() = [0]
[2]
u() = [0]
[0]
v() = [0]
[0]
and(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
[0 0] [0 0] [1]
Hurray, we answered YES(?,O(n^1))Tool pair2rc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.44 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
, f(true(), x, y, z) -> del(.(y, z))
, f(false(), x, y, z) -> .(x, del(.(y, z)))
, =(nil(), nil()) -> true()
, =(.(x, y), nil()) -> false()
, =(nil(), .(y, z)) -> false()
, =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))}
StartTerms: basic terms
Strategy: none
Certificate: YES(?,O(n^1))
Application of 'pair2 (timeout of 60.0 seconds)':
-------------------------------------------------
The processor is not applicable, reason is:
Input problem is not restricted to innermost rewriting
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
, f(true(), x, y, z) -> del(.(y, z))
, f(false(), x, y, z) -> .(x, del(.(y, z)))
, =(nil(), nil()) -> true()
, =(.(x, y), nil()) -> false()
, =(nil(), .(y, z)) -> false()
, =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))}
StartTerms: basic terms
Strategy: none
1) 'Fastest' proved the goal fastest:
'Sequentially' proved the goal fastest:
'Fastest' succeeded:
'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' proved the goal fastest:
The following argument positions are usable:
Uargs(del) = {}, Uargs(.) = {2}, Uargs(f) = {1}, Uargs(=) = {},
Uargs(and) = {}
We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
Interpretation Functions:
del(x1) = [2 0] x1 + [0]
[0 1] [0]
.(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
[0 0] [0 0] [1]
f(x1, x2, x3, x4) = [1 2] x1 + [1 1] x2 + [2 2] x3 + [2 0] x4 + [1]
[0 0] [0 0] [0 0] [0 0] [1]
=(x1, x2) = [1 1] x1 + [0 0] x2 + [0]
[0 0] [0 0] [1]
true() = [0]
[1]
false() = [1]
[1]
nil() = [0]
[2]
u() = [0]
[0]
v() = [0]
[0]
and(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
[0 0] [0 0] [1]
Hurray, we answered YES(?,O(n^1))Tool pair3irc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.44 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
, f(true(), x, y, z) -> del(.(y, z))
, f(false(), x, y, z) -> .(x, del(.(y, z)))
, =(nil(), nil()) -> true()
, =(.(x, y), nil()) -> false()
, =(nil(), .(y, z)) -> false()
, =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
The input problem contains no overlaps that give rise to inapplicable rules.
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
, f(true(), x, y, z) -> del(.(y, z))
, f(false(), x, y, z) -> .(x, del(.(y, z)))
, =(nil(), nil()) -> true()
, =(.(x, y), nil()) -> false()
, =(nil(), .(y, z)) -> false()
, =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))}
StartTerms: basic terms
Strategy: innermost
1) 'Fastest' proved the goal fastest:
'Sequentially' proved the goal fastest:
'Fastest' succeeded:
'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' proved the goal fastest:
The following argument positions are usable:
Uargs(del) = {}, Uargs(.) = {2}, Uargs(f) = {1}, Uargs(=) = {},
Uargs(and) = {}
We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
Interpretation Functions:
del(x1) = [2 0] x1 + [0]
[0 1] [0]
.(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
[0 0] [0 0] [1]
f(x1, x2, x3, x4) = [1 2] x1 + [1 1] x2 + [2 2] x3 + [2 0] x4 + [1]
[0 0] [0 0] [0 0] [0 0] [1]
=(x1, x2) = [1 1] x1 + [0 0] x2 + [0]
[0 0] [0 0] [1]
true() = [0]
[1]
false() = [1]
[1]
nil() = [0]
[2]
u() = [0]
[0]
v() = [0]
[0]
and(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
[0 0] [0 0] [1]
Hurray, we answered YES(?,O(n^1))Tool pair3rc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.44 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
, f(true(), x, y, z) -> del(.(y, z))
, f(false(), x, y, z) -> .(x, del(.(y, z)))
, =(nil(), nil()) -> true()
, =(.(x, y), nil()) -> false()
, =(nil(), .(y, z)) -> false()
, =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))}
StartTerms: basic terms
Strategy: none
Certificate: YES(?,O(n^1))
Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
The processor is not applicable, reason is:
Input problem is not restricted to innermost rewriting
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
, f(true(), x, y, z) -> del(.(y, z))
, f(false(), x, y, z) -> .(x, del(.(y, z)))
, =(nil(), nil()) -> true()
, =(.(x, y), nil()) -> false()
, =(nil(), .(y, z)) -> false()
, =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))}
StartTerms: basic terms
Strategy: none
1) 'Fastest' proved the goal fastest:
'Sequentially' proved the goal fastest:
'Fastest' succeeded:
'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' proved the goal fastest:
The following argument positions are usable:
Uargs(del) = {}, Uargs(.) = {2}, Uargs(f) = {1}, Uargs(=) = {},
Uargs(and) = {}
We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
Interpretation Functions:
del(x1) = [2 0] x1 + [0]
[0 1] [0]
.(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
[0 0] [0 0] [1]
f(x1, x2, x3, x4) = [1 2] x1 + [1 1] x2 + [2 2] x3 + [2 0] x4 + [1]
[0 0] [0 0] [0 0] [0 0] [1]
=(x1, x2) = [1 1] x1 + [0 0] x2 + [0]
[0 0] [0 0] [1]
true() = [0]
[1]
false() = [1]
[1]
nil() = [0]
[2]
u() = [0]
[0]
v() = [0]
[0]
and(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
[0 0] [0 0] [1]
Hurray, we answered YES(?,O(n^1))Tool rc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.44 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
, f(true(), x, y, z) -> del(.(y, z))
, f(false(), x, y, z) -> .(x, del(.(y, z)))
, =(nil(), nil()) -> true()
, =(.(x, y), nil()) -> false()
, =(nil(), .(y, z)) -> false()
, =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))}
StartTerms: basic terms
Strategy: none
Certificate: YES(?,O(n^1))
Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
'Fastest' proved the goal fastest:
'Sequentially' proved the goal fastest:
'Fastest' succeeded:
'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' proved the goal fastest:
The following argument positions are usable:
Uargs(del) = {}, Uargs(.) = {2}, Uargs(f) = {1}, Uargs(=) = {},
Uargs(and) = {}
We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
Interpretation Functions:
del(x1) = [2 0] x1 + [0]
[0 1] [0]
.(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
[0 0] [0 0] [1]
f(x1, x2, x3, x4) = [1 2] x1 + [1 1] x2 + [2 2] x3 + [2 0] x4 + [1]
[0 0] [0 0] [0 0] [0 0] [1]
=(x1, x2) = [1 1] x1 + [0 0] x2 + [0]
[0 0] [0 0] [1]
true() = [0]
[1]
false() = [1]
[1]
nil() = [0]
[2]
u() = [0]
[0]
v() = [0]
[0]
and(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
[0 0] [0 0] [1]
Hurray, we answered YES(?,O(n^1))Tool tup3irc
Execution Time | 1.6890888ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 2.44 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
, f(true(), x, y, z) -> del(.(y, z))
, f(false(), x, y, z) -> .(x, del(.(y, z)))
, =(nil(), nil()) -> true()
, =(.(x, y), nil()) -> false()
, =(nil(), .(y, z)) -> false()
, =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
The input problem contains no overlaps that give rise to inapplicable rules.
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ del(.(x, .(y, z))) -> f(=(x, y), x, y, z)
, f(true(), x, y, z) -> del(.(y, z))
, f(false(), x, y, z) -> .(x, del(.(y, z)))
, =(nil(), nil()) -> true()
, =(.(x, y), nil()) -> false()
, =(nil(), .(y, z)) -> false()
, =(.(x, y), .(u(), v())) -> and(=(x, u()), =(y, v()))}
StartTerms: basic terms
Strategy: innermost
1) 'Fastest' proved the goal fastest:
'Sequentially' proved the goal fastest:
'Fastest' succeeded:
'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' proved the goal fastest:
The following argument positions are usable:
Uargs(del) = {}, Uargs(.) = {2}, Uargs(f) = {1}, Uargs(=) = {},
Uargs(and) = {}
We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
Interpretation Functions:
del(x1) = [2 0] x1 + [0]
[0 1] [0]
.(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
[0 0] [0 0] [1]
f(x1, x2, x3, x4) = [1 2] x1 + [1 1] x2 + [2 2] x3 + [2 0] x4 + [1]
[0 0] [0 0] [0 0] [0 0] [1]
=(x1, x2) = [1 1] x1 + [0 0] x2 + [0]
[0 0] [0 0] [1]
true() = [0]
[1]
false() = [1]
[1]
nil() = [0]
[2]
u() = [0]
[0]
v() = [0]
[0]
and(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
[0 0] [0 0] [1]
Hurray, we answered YES(?,O(n^1))