Problem SK90 2.51

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.51

stdout:

MAYBE

Problem:
 ack(0(),y) -> s(y)
 ack(s(x),0()) -> ack(x,s(0()))
 ack(s(x),s(y)) -> ack(x,ack(s(x),y))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.51

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.51

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  ack(0(), y) -> s(y)
     , ack(s(x), 0()) -> ack(x, s(0()))
     , ack(s(x), s(y)) -> ack(x, ack(s(x), y))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: ack^#(0(), y) -> c_0()
              , 2: ack^#(s(x), 0()) -> c_1(ack^#(x, s(0())))
              , 3: ack^#(s(x), s(y)) -> c_2(ack^#(x, ack(s(x), y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{2}                                                       [     inherited      ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [     inherited      ]
                    |
                    `->{1}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}.
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(ack^#) = {},
                 Uargs(c_1) = {1}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                ack^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ack^#(0(), y) -> c_0()}
               Weak Rules: {ack^#(s(x), 0()) -> c_1(ack^#(x, s(0())))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ack^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [3]
                      [0]
                s(x1) = [1 1 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                ack^#(x1, x2) = [2 2 0] x1 + [2 3 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [1]
                                [0 2 0]      [0 0 0]      [0]
                c_0() = [1]
                        [1]
                        [0]
                c_1(x1) = [1 2 0] x1 + [1]
                          [0 0 0]      [1]
                          [0 0 0]      [0]
           
           * Path {2}->{3}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}.
           
           * Path {2}->{3}->{1}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  ack(0(), y) -> s(y)
                , ack(s(x), 0()) -> ack(x, s(0()))
                , ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: ack^#(0(), y) -> c_0()
              , 2: ack^#(s(x), 0()) -> c_1(ack^#(x, s(0())))
              , 3: ack^#(s(x), s(y)) -> c_2(ack^#(x, ack(s(x), y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{2}                                                       [     inherited      ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [     inherited      ]
                    |
                    `->{1}                                               [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}.
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(ack^#) = {},
                 Uargs(c_1) = {1}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                ack^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ack^#(0(), y) -> c_0()}
               Weak Rules: {ack^#(s(x), 0()) -> c_1(ack^#(x, s(0())))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ack^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [1]
                      [3]
                s(x1) = [1 2] x1 + [2]
                        [0 0]      [0]
                ack^#(x1, x2) = [0 0] x1 + [0 1] x2 + [1]
                                [2 0]      [4 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [4 0] x1 + [0]
                          [0 0]      [7]
           
           * Path {2}->{3}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}.
           
           * Path {2}->{3}->{1}: MAYBE
             -------------------------
             
             The usable rules for this path are:
             
               {  ack(0(), y) -> s(y)
                , ack(s(x), 0()) -> ack(x, s(0()))
                , ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  ack^#(s(x), s(y)) -> c_2(ack^#(x, ack(s(x), y)))
                  , ack^#(s(x), 0()) -> c_1(ack^#(x, s(0())))
                  , ack^#(0(), y) -> c_0()
                  , ack(0(), y) -> s(y)
                  , ack(s(x), 0()) -> ack(x, s(0()))
                  , ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
             
             Proof Output:    
               The input cannot be shown compatible
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: ack^#(0(), y) -> c_0()
              , 2: ack^#(s(x), 0()) -> c_1(ack^#(x, s(0())))
              , 3: ack^#(s(x), s(y)) -> c_2(ack^#(x, ack(s(x), y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{2}                                                       [     inherited      ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [     inherited      ]
                    |
                    `->{1}                                               [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}.
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(ack^#) = {},
                 Uargs(c_1) = {1}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                ack^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                c_2(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ack^#(0(), y) -> c_0()}
               Weak Rules: {ack^#(s(x), 0()) -> c_1(ack^#(x, s(0())))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ack^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                ack^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_0() = [1]
                c_1(x1) = [1] x1 + [0]
           
           * Path {2}->{3}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}.
           
           * Path {2}->{3}->{1}: MAYBE
             -------------------------
             
             The usable rules for this path are:
             
               {  ack(0(), y) -> s(y)
                , ack(s(x), 0()) -> ack(x, s(0()))
                , ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  ack^#(s(x), s(y)) -> c_2(ack^#(x, ack(s(x), y)))
                  , ack^#(s(x), 0()) -> c_1(ack^#(x, s(0())))
                  , ack^#(0(), y) -> c_0()
                  , ack(0(), y) -> s(y)
                  , ack(s(x), 0()) -> ack(x, s(0()))
                  , ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
             
             Proof Output:    
               The input cannot be shown compatible
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.51

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.51

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  ack(0(), y) -> s(y)
     , ack(s(x), 0()) -> ack(x, s(0()))
     , ack(s(x), s(y)) -> ack(x, ack(s(x), y))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: ack^#(0(), y) -> c_0(y)
              , 2: ack^#(s(x), 0()) -> c_1(ack^#(x, s(0())))
              , 3: ack^#(s(x), s(y)) -> c_2(ack^#(x, ack(s(x), y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{2}                                                       [     inherited      ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [     inherited      ]
                    |
                    `->{1}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}.
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(ack^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {1}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                ack^#(x1, x2) = [0 0 0] x1 + [3 3 3] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ack^#(0(), y) -> c_0(y)}
               Weak Rules: {ack^#(s(x), 0()) -> c_1(ack^#(x, s(0())))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ack^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 2 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                ack^#(x1, x2) = [1 2 0] x1 + [0 0 0] x2 + [0]
                                [2 0 2]      [4 0 0]      [0]
                                [2 0 0]      [4 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [1]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [3]
                          [0 0 0]      [7]
           
           * Path {2}->{3}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}.
           
           * Path {2}->{3}->{1}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  ack(0(), y) -> s(y)
                , ack(s(x), 0()) -> ack(x, s(0()))
                , ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: ack^#(0(), y) -> c_0(y)
              , 2: ack^#(s(x), 0()) -> c_1(ack^#(x, s(0())))
              , 3: ack^#(s(x), s(y)) -> c_2(ack^#(x, ack(s(x), y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{2}                                                       [     inherited      ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [     inherited      ]
                    |
                    `->{1}                                               [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}.
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(ack^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {1}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                ack^#(x1, x2) = [0 0] x1 + [3 3] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ack^#(0(), y) -> c_0(y)}
               Weak Rules: {ack^#(s(x), 0()) -> c_1(ack^#(x, s(0())))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ack^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [1]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                ack^#(x1, x2) = [2 0] x1 + [2 4] x2 + [0]
                                [2 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [1]
                          [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {2}->{3}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}.
           
           * Path {2}->{3}->{1}: MAYBE
             -------------------------
             
             The usable rules for this path are:
             
               {  ack(0(), y) -> s(y)
                , ack(s(x), 0()) -> ack(x, s(0()))
                , ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  ack^#(s(x), s(y)) -> c_2(ack^#(x, ack(s(x), y)))
                  , ack^#(s(x), 0()) -> c_1(ack^#(x, s(0())))
                  , ack^#(0(), y) -> c_0(y)
                  , ack(0(), y) -> s(y)
                  , ack(s(x), 0()) -> ack(x, s(0()))
                  , ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
             
             Proof Output:    
               The input cannot be shown compatible
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: ack^#(0(), y) -> c_0(y)
              , 2: ack^#(s(x), 0()) -> c_1(ack^#(x, s(0())))
              , 3: ack^#(s(x), s(y)) -> c_2(ack^#(x, ack(s(x), y)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{2}                                                       [     inherited      ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [     inherited      ]
                    |
                    `->{1}                                               [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}.
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(ack^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {1}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                ack^#(x1, x2) = [0] x1 + [3] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ack^#(0(), y) -> c_0(y)}
               Weak Rules: {ack^#(s(x), 0()) -> c_1(ack^#(x, s(0())))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ack^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [4]
                s(x1) = [1] x1 + [2]
                ack^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_0(x1) = [0] x1 + [1]
                c_1(x1) = [1] x1 + [0]
           
           * Path {2}->{3}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}.
           
           * Path {2}->{3}->{1}: MAYBE
             -------------------------
             
             The usable rules for this path are:
             
               {  ack(0(), y) -> s(y)
                , ack(s(x), 0()) -> ack(x, s(0()))
                , ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  ack^#(s(x), s(y)) -> c_2(ack^#(x, ack(s(x), y)))
                  , ack^#(s(x), 0()) -> c_1(ack^#(x, s(0())))
                  , ack^#(0(), y) -> c_0(y)
                  , ack(0(), y) -> s(y)
                  , ack(s(x), 0()) -> ack(x, s(0()))
                  , ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
             
             Proof Output:    
               The input cannot be shown compatible
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool pair1rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 2.51

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  ack(0(), y) -> s(y)
     , ack(s(x), 0()) -> ack(x, s(0()))
     , ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3irc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 2.51

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  ack(0(), y) -> s(y)
     , ack(s(x), 0()) -> ack(x, s(0()))
     , ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 2.51

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  ack(0(), y) -> s(y)
     , ack(s(x), 0()) -> ack(x, s(0()))
     , ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool rc

Execution TimeUnknown
Answer
MAYBE
InputSK90 2.51

stdout:

MAYBE

We consider the following Problem:

  Strict Trs:
    {  ack(0(), y) -> s(y)
     , ack(s(x), 0()) -> ack(x, s(0()))
     , ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
  StartTerms: basic terms
  Strategy: none

Certificate: MAYBE

Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'Fastest' failed due to the following reason:
         None of the processors succeeded.
         
         Details of failed attempt(s):
         -----------------------------
           1) 'Sequentially' failed due to the following reason:
                None of the processors succeeded.
                
                Details of failed attempt(s):
                -----------------------------
                  1) 'empty' failed due to the following reason:
                       Empty strict component of the problem is NOT empty.
                  
                  2) 'Fastest' failed due to the following reason:
                       None of the processors succeeded.
                       
                       Details of failed attempt(s):
                       -----------------------------
                         1) 'matrix-interpretation of dimension 4 (timeout of 100.0 seconds)' failed due to the following reason:
                              The input cannot be shown compatible
                         
                         2) 'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' failed due to the following reason:
                              The input cannot be shown compatible
                         
                         3) 'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' failed due to the following reason:
                              The input cannot be shown compatible
                         
                  
           
           2) 'Fastest' failed due to the following reason:
                None of the processors succeeded.
                
                Details of failed attempt(s):
                -----------------------------
                  1) 'Bounds with perSymbol-enrichment and initial automaton 'match' (timeout of 5.0 seconds)' failed due to the following reason:
                       match-boundness of the problem could not be verified.
                  
                  2) 'Bounds with minimal-enrichment and initial automaton 'match' (timeout of 100.0 seconds)' failed due to the following reason:
                       match-boundness of the problem could not be verified.
                  
           
    
    2) 'dp' failed due to the following reason:
         We have computed the following dependency pairs
         
         Strict Dependency Pairs:
           {  ack^#(0(), y) -> c_1(y)
            , ack^#(s(x), 0()) -> c_2(ack^#(x, s(0())))
            , ack^#(s(x), s(y)) -> c_3(ack^#(x, ack(s(x), y)))}
         
         We consider the following Problem:
         
           Strict DPs:
             {  ack^#(0(), y) -> c_1(y)
              , ack^#(s(x), 0()) -> c_2(ack^#(x, s(0())))
              , ack^#(s(x), s(y)) -> c_3(ack^#(x, ack(s(x), y)))}
           Strict Trs:
             {  ack(0(), y) -> s(y)
              , ack(s(x), 0()) -> ack(x, s(0()))
              , ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
           StartTerms: basic terms
           Strategy: none
         
         Certificate: MAYBE
         
         Application of 'usablerules':
         -----------------------------
           All rules are usable.
           
           No subproblems were generated.
    

Arrrr..

Tool tup3irc

Execution Time61.54607ms
Answer
TIMEOUT
InputSK90 2.51

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  ack(0(), y) -> s(y)
     , ack(s(x), 0()) -> ack(x, s(0()))
     , ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: TIMEOUT

Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..