Problem SK90 4.13

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputSK90 4.13

stdout:

MAYBE

Problem:
 -(0(),y) -> 0()
 -(x,0()) -> x
 -(x,s(y)) -> if(greater(x,s(y)),s(-(x,p(s(y)))),0())
 p(0()) -> 0()
 p(s(x)) -> x

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputSK90 4.13

stdout:

YES(?,O(n^1))

Tool IRC2

Execution TimeUnknown
Answer
YES(?,O(n^3))
InputSK90 4.13

stdout:

YES(?,O(n^3))

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           YES(?,O(n^3))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  -(0(), y) -> 0()
     , -(x, 0()) -> x
     , -(x, s(y)) -> if(greater(x, s(y)), s(-(x, p(s(y)))), 0())
     , p(0()) -> 0()
     , p(s(x)) -> x}

Proof Output:    
  'wdg' proved the best result:
  
  Details:
  --------
    'wdg' succeeded with the following output:
     'wdg'
     -----
     Answer:           YES(?,O(n^3))
     Input Problem:    innermost runtime-complexity with respect to
       Rules:
         {  -(0(), y) -> 0()
          , -(x, 0()) -> x
          , -(x, s(y)) -> if(greater(x, s(y)), s(-(x, p(s(y)))), 0())
          , p(0()) -> 0()
          , p(s(x)) -> x}
     
     Proof Output:    
       Transformation Details:
       -----------------------
         We have computed the following set of weak (innermost) dependency pairs:
         
           {  1: -^#(0(), y) -> c_0()
            , 2: -^#(x, 0()) -> c_1()
            , 3: -^#(x, s(y)) -> c_2(-^#(x, p(s(y))))
            , 4: p^#(0()) -> c_3()
            , 5: p^#(s(x)) -> c_4()}
         
         Following Dependency Graph (modulo SCCs) was computed. (Answers to
         subproofs are indicated to the right.)
         
           ->{5}                                                       [    YES(?,O(1))     ]
           
           ->{4}                                                       [    YES(?,O(1))     ]
           
           ->{3}                                                       [   YES(?,O(n^2))    ]
              |
              |->{1}                                                   [   YES(?,O(n^3))    ]
              |
              `->{2}                                                   [   YES(?,O(n^3))    ]
           
         
       
       Sub-problems:
       -------------
         * Path {3}: YES(?,O(n^2))
           -----------------------
           
           The usable rules for this path are:
           
             {  p(0()) -> 0()
              , p(s(x)) -> x}
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(-) = {}, Uargs(s) = {}, Uargs(if) = {}, Uargs(greater) = {},
               Uargs(p) = {}, Uargs(-^#) = {2}, Uargs(c_2) = {1}, Uargs(p^#) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              -(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                          [0 0 0]      [0 0 0]      [0]
                          [0 0 0]      [0 0 0]      [0]
              0() = [0]
                    [0]
                    [0]
              s(x1) = [1 1 1] x1 + [0]
                      [0 1 0]      [0]
                      [0 0 0]      [0]
              if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]
              greater(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
              p(x1) = [1 0 0] x1 + [2]
                      [0 2 0]      [0]
                      [1 0 0]      [0]
              -^#(x1, x2) = [3 3 3] x1 + [1 0 0] x2 + [0]
                            [3 3 3]      [3 3 3]      [0]
                            [3 3 3]      [3 3 3]      [0]
              c_0() = [0]
                      [0]
                      [0]
              c_1() = [0]
                      [0]
                      [0]
              c_2(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
              p^#(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_3() = [0]
                      [0]
                      [0]
              c_4() = [0]
                      [0]
                      [0]
           Complexity induced by the adequate RMI: YES(?,O(n^2))
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 3'
           --------------------------------------
           Answer:           YES(?,O(n^2))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {-^#(x, s(y)) -> c_2(-^#(x, p(s(y))))}
             Weak Rules:
               {  p(0()) -> 0()
                , p(s(x)) -> x}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(s) = {}, Uargs(p) = {}, Uargs(-^#) = {}, Uargs(c_2) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              0() = [0]
                    [0]
                    [0]
              s(x1) = [1 2 1] x1 + [0]
                      [0 0 1]      [0]
                      [0 0 1]      [4]
              p(x1) = [4 0 0] x1 + [0]
                      [2 0 0]      [4]
                      [0 1 0]      [0]
              -^#(x1, x2) = [0 0 0] x1 + [0 0 2] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 4 4]      [3 1 0]      [0]
              c_2(x1) = [1 0 0] x1 + [5]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
         
         * Path {3}->{1}: YES(?,O(n^3))
           ----------------------------
           
           The usable rules for this path are:
           
             {  p(0()) -> 0()
              , p(s(x)) -> x}
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(-) = {}, Uargs(s) = {}, Uargs(if) = {}, Uargs(greater) = {},
               Uargs(p) = {}, Uargs(-^#) = {2}, Uargs(c_2) = {1}, Uargs(p^#) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              -(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                          [0 0 0]      [0 0 0]      [0]
                          [0 0 0]      [0 0 0]      [0]
              0() = [0]
                    [0]
                    [0]
              s(x1) = [1 3 0] x1 + [0]
                      [0 1 0]      [0]
                      [0 0 1]      [0]
              if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]
              greater(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
              p(x1) = [2 0 0] x1 + [2]
                      [0 1 0]      [0]
                      [0 0 1]      [0]
              -^#(x1, x2) = [0 0 0] x1 + [3 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
              c_0() = [0]
                      [0]
                      [0]
              c_1() = [0]
                      [0]
                      [0]
              c_2(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
              p^#(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_3() = [0]
                      [0]
                      [0]
              c_4() = [0]
                      [0]
                      [0]
           Complexity induced by the adequate RMI: YES(?,O(n^3))
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 3'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {-^#(0(), y) -> c_0()}
             Weak Rules:
               {  -^#(x, s(y)) -> c_2(-^#(x, p(s(y))))
                , p(0()) -> 0()
                , p(s(x)) -> x}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(s) = {}, Uargs(p) = {}, Uargs(-^#) = {}, Uargs(c_2) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              0() = [2]
                    [0]
                    [0]
              s(x1) = [1 0 0] x1 + [0]
                      [0 1 0]      [0]
                      [0 0 1]      [2]
              p(x1) = [1 0 0] x1 + [0]
                      [0 1 0]      [4]
                      [0 0 4]      [0]
              -^#(x1, x2) = [2 0 0] x1 + [0 0 0] x2 + [2]
                            [0 0 0]      [0 0 2]      [4]
                            [4 4 0]      [0 0 0]      [4]
              c_0() = [1]
                      [0]
                      [0]
              c_2(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [7]
                        [2 0 0]      [0]
         
         * Path {3}->{2}: YES(?,O(n^3))
           ----------------------------
           
           The usable rules for this path are:
           
             {  p(0()) -> 0()
              , p(s(x)) -> x}
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(-) = {}, Uargs(s) = {}, Uargs(if) = {}, Uargs(greater) = {},
               Uargs(p) = {}, Uargs(-^#) = {2}, Uargs(c_2) = {1}, Uargs(p^#) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              -(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                          [0 0 0]      [0 0 0]      [0]
                          [0 0 0]      [0 0 0]      [0]
              0() = [0]
                    [0]
                    [0]
              s(x1) = [1 3 0] x1 + [0]
                      [0 1 0]      [0]
                      [0 0 1]      [0]
              if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]
              greater(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
              p(x1) = [2 0 0] x1 + [2]
                      [0 1 0]      [0]
                      [0 0 1]      [0]
              -^#(x1, x2) = [0 0 0] x1 + [3 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
              c_0() = [0]
                      [0]
                      [0]
              c_1() = [0]
                      [0]
                      [0]
              c_2(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
              p^#(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_3() = [0]
                      [0]
                      [0]
              c_4() = [0]
                      [0]
                      [0]
           Complexity induced by the adequate RMI: YES(?,O(n^3))
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 3'
           --------------------------------------
           Answer:           YES(?,O(n^2))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {-^#(x, 0()) -> c_1()}
             Weak Rules:
               {  -^#(x, s(y)) -> c_2(-^#(x, p(s(y))))
                , p(0()) -> 0()
                , p(s(x)) -> x}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(s) = {}, Uargs(p) = {}, Uargs(-^#) = {}, Uargs(c_2) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              0() = [2]
                    [0]
                    [0]
              s(x1) = [1 2 0] x1 + [0]
                      [0 0 1]      [0]
                      [0 0 1]      [0]
              p(x1) = [1 0 0] x1 + [0]
                      [4 0 0]      [0]
                      [0 0 2]      [0]
              -^#(x1, x2) = [0 0 0] x1 + [2 0 0] x2 + [0]
                            [0 0 0]      [0 0 2]      [0]
                            [4 4 4]      [0 7 1]      [0]
              c_1() = [1]
                      [0]
                      [0]
              c_2(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 2 0]      [0]
         
         * Path {4}: YES(?,O(1))
           ---------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(-) = {}, Uargs(s) = {}, Uargs(if) = {}, Uargs(greater) = {},
               Uargs(p) = {}, Uargs(-^#) = {}, Uargs(c_2) = {}, Uargs(p^#) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              -(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                          [0 0 0]      [0 0 0]      [0]
                          [0 0 0]      [0 0 0]      [0]
              0() = [0]
                    [0]
                    [0]
              s(x1) = [0 0 0] x1 + [0]
                      [0 0 0]      [0]
                      [0 0 0]      [0]
              if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]
              greater(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
              p(x1) = [0 0 0] x1 + [0]
                      [0 0 0]      [0]
                      [0 0 0]      [0]
              -^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
              c_0() = [0]
                      [0]
                      [0]
              c_1() = [0]
                      [0]
                      [0]
              c_2(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              p^#(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_3() = [0]
                      [0]
                      [0]
              c_4() = [0]
                      [0]
                      [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 3'
           --------------------------------------
           Answer:           YES(?,O(1))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {p^#(0()) -> c_3()}
             Weak Rules: {}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(p^#) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              0() = [2]
                    [2]
                    [2]
              p^#(x1) = [0 2 0] x1 + [7]
                        [2 2 0]      [3]
                        [2 2 2]      [3]
              c_3() = [0]
                      [1]
                      [1]
         
         * Path {5}: YES(?,O(1))
           ---------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(-) = {}, Uargs(s) = {}, Uargs(if) = {}, Uargs(greater) = {},
               Uargs(p) = {}, Uargs(-^#) = {}, Uargs(c_2) = {}, Uargs(p^#) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              -(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                          [0 0 0]      [0 0 0]      [0]
                          [0 0 0]      [0 0 0]      [0]
              0() = [0]
                    [0]
                    [0]
              s(x1) = [0 0 0] x1 + [0]
                      [0 0 0]      [0]
                      [0 0 0]      [0]
              if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]
              greater(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
              p(x1) = [0 0 0] x1 + [0]
                      [0 0 0]      [0]
                      [0 0 0]      [0]
              -^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
              c_0() = [0]
                      [0]
                      [0]
              c_1() = [0]
                      [0]
                      [0]
              c_2(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              p^#(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_3() = [0]
                      [0]
                      [0]
              c_4() = [0]
                      [0]
                      [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 3'
           --------------------------------------
           Answer:           YES(?,O(1))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {p^#(s(x)) -> c_4()}
             Weak Rules: {}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(s) = {}, Uargs(p^#) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              s(x1) = [0 0 0] x1 + [2]
                      [0 0 0]      [2]
                      [0 0 0]      [2]
              p^#(x1) = [0 2 0] x1 + [7]
                        [2 2 0]      [3]
                        [2 2 2]      [3]
              c_4() = [0]
                      [1]
                      [1]

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputSK90 4.13

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
YES(?,O(n^3))
InputSK90 4.13

stdout:

YES(?,O(n^3))

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           YES(?,O(n^3))
Input Problem:    runtime-complexity with respect to
  Rules:
    {  -(0(), y) -> 0()
     , -(x, 0()) -> x
     , -(x, s(y)) -> if(greater(x, s(y)), s(-(x, p(s(y)))), 0())
     , p(0()) -> 0()
     , p(s(x)) -> x}

Proof Output:    
  'wdg' proved the best result:
  
  Details:
  --------
    'wdg' succeeded with the following output:
     'wdg'
     -----
     Answer:           YES(?,O(n^3))
     Input Problem:    runtime-complexity with respect to
       Rules:
         {  -(0(), y) -> 0()
          , -(x, 0()) -> x
          , -(x, s(y)) -> if(greater(x, s(y)), s(-(x, p(s(y)))), 0())
          , p(0()) -> 0()
          , p(s(x)) -> x}
     
     Proof Output:    
       Transformation Details:
       -----------------------
         We have computed the following set of weak (innermost) dependency pairs:
         
           {  1: -^#(0(), y) -> c_0()
            , 2: -^#(x, 0()) -> c_1(x)
            , 3: -^#(x, s(y)) -> c_2(x, y, -^#(x, p(s(y))))
            , 4: p^#(0()) -> c_3()
            , 5: p^#(s(x)) -> c_4(x)}
         
         Following Dependency Graph (modulo SCCs) was computed. (Answers to
         subproofs are indicated to the right.)
         
           ->{5}                                                       [   YES(?,O(n^3))    ]
           
           ->{4}                                                       [    YES(?,O(1))     ]
           
           ->{3}                                                       [   YES(?,O(n^2))    ]
              |
              |->{1}                                                   [   YES(?,O(n^3))    ]
              |
              `->{2}                                                   [   YES(?,O(n^3))    ]
           
         
       
       Sub-problems:
       -------------
         * Path {3}: YES(?,O(n^2))
           -----------------------
           
           The usable rules for this path are:
           
             {  p(0()) -> 0()
              , p(s(x)) -> x}
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(-) = {}, Uargs(s) = {}, Uargs(if) = {}, Uargs(greater) = {},
               Uargs(p) = {}, Uargs(-^#) = {2}, Uargs(c_1) = {}, Uargs(c_2) = {3},
               Uargs(p^#) = {}, Uargs(c_4) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              -(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                          [0 0 0]      [0 0 0]      [0]
                          [0 0 0]      [0 0 0]      [0]
              0() = [0]
                    [0]
                    [0]
              s(x1) = [1 2 1] x1 + [0]
                      [0 0 0]      [0]
                      [0 0 0]      [0]
              if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]
              greater(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
              p(x1) = [1 0 0] x1 + [1]
                      [2 0 0]      [0]
                      [2 0 0]      [0]
              -^#(x1, x2) = [3 3 2] x1 + [1 0 0] x2 + [0]
                            [3 3 3]      [3 3 3]      [0]
                            [3 3 3]      [3 3 3]      [0]
              c_0() = [0]
                      [0]
                      [0]
              c_1(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [1 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 1 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 1]      [0]
              p^#(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_3() = [0]
                      [0]
                      [0]
              c_4(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
           Complexity induced by the adequate RMI: YES(?,O(n^1))
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 3'
           --------------------------------------
           Answer:           YES(?,O(n^2))
           Input Problem:    DP runtime-complexity with respect to
             Strict Rules: {-^#(x, s(y)) -> c_2(x, y, -^#(x, p(s(y))))}
             Weak Rules:
               {  p(0()) -> 0()
                , p(s(x)) -> x}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(s) = {}, Uargs(p) = {}, Uargs(-^#) = {}, Uargs(c_2) = {3}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              0() = [0]
                    [0]
                    [0]
              s(x1) = [1 1 0] x1 + [0]
                      [0 0 1]      [0]
                      [0 0 1]      [2]
              p(x1) = [4 0 0] x1 + [4]
                      [1 0 0]      [4]
                      [0 1 0]      [0]
              -^#(x1, x2) = [0 0 0] x1 + [0 0 4] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
              c_2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [1 0 0] x3 + [5]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
         
         * Path {3}->{1}: YES(?,O(n^3))
           ----------------------------
           
           The usable rules for this path are:
           
             {  p(0()) -> 0()
              , p(s(x)) -> x}
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(-) = {}, Uargs(s) = {}, Uargs(if) = {}, Uargs(greater) = {},
               Uargs(p) = {}, Uargs(-^#) = {2}, Uargs(c_1) = {}, Uargs(c_2) = {3},
               Uargs(p^#) = {}, Uargs(c_4) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              -(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                          [0 0 0]      [0 0 0]      [0]
                          [0 0 0]      [0 0 0]      [0]
              0() = [0]
                    [0]
                    [0]
              s(x1) = [1 3 0] x1 + [0]
                      [0 1 0]      [0]
                      [0 0 1]      [0]
              if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]
              greater(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
              p(x1) = [2 0 0] x1 + [2]
                      [0 1 0]      [0]
                      [0 0 1]      [0]
              -^#(x1, x2) = [0 0 0] x1 + [3 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
              c_0() = [0]
                      [0]
                      [0]
              c_1(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [1 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 1 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 1]      [0]
              p^#(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_3() = [0]
                      [0]
                      [0]
              c_4(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
           Complexity induced by the adequate RMI: YES(?,O(n^3))
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 3'
           --------------------------------------
           Answer:           YES(?,O(n^2))
           Input Problem:    DP runtime-complexity with respect to
             Strict Rules: {-^#(0(), y) -> c_0()}
             Weak Rules:
               {  -^#(x, s(y)) -> c_2(x, y, -^#(x, p(s(y))))
                , p(0()) -> 0()
                , p(s(x)) -> x}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(s) = {}, Uargs(p) = {}, Uargs(-^#) = {}, Uargs(c_2) = {3}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              0() = [4]
                    [2]
                    [2]
              s(x1) = [1 1 0] x1 + [0]
                      [0 0 0]      [0]
                      [0 0 1]      [2]
              p(x1) = [1 0 2] x1 + [0]
                      [1 0 2]      [0]
                      [0 0 2]      [0]
              -^#(x1, x2) = [0 2 0] x1 + [0 0 0] x2 + [2]
                            [0 0 0]      [0 0 0]      [0]
                            [0 4 0]      [0 0 4]      [0]
              c_0() = [1]
                      [0]
                      [0]
              c_2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [1 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 4]      [2 0 0]      [3]
         
         * Path {3}->{2}: YES(?,O(n^3))
           ----------------------------
           
           The usable rules for this path are:
           
             {  p(0()) -> 0()
              , p(s(x)) -> x}
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(-) = {}, Uargs(s) = {}, Uargs(if) = {}, Uargs(greater) = {},
               Uargs(p) = {}, Uargs(-^#) = {2}, Uargs(c_1) = {}, Uargs(c_2) = {3},
               Uargs(p^#) = {}, Uargs(c_4) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              -(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                          [0 0 0]      [0 0 0]      [0]
                          [0 0 0]      [0 0 0]      [0]
              0() = [0]
                    [3]
                    [0]
              s(x1) = [1 3 0] x1 + [0]
                      [0 1 0]      [0]
                      [0 0 1]      [0]
              if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]
              greater(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
              p(x1) = [2 0 0] x1 + [2]
                      [0 2 0]      [2]
                      [0 0 1]      [0]
              -^#(x1, x2) = [3 3 3] x1 + [3 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
              c_0() = [0]
                      [0]
                      [0]
              c_1(x1) = [1 1 1] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [1 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 1 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 1]      [0]
              p^#(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_3() = [0]
                      [0]
                      [0]
              c_4(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
           Complexity induced by the adequate RMI: YES(?,O(n^3))
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 3'
           --------------------------------------
           Answer:           YES(?,O(n^2))
           Input Problem:    DP runtime-complexity with respect to
             Strict Rules: {-^#(x, 0()) -> c_1(x)}
             Weak Rules:
               {  -^#(x, s(y)) -> c_2(x, y, -^#(x, p(s(y))))
                , p(0()) -> 0()
                , p(s(x)) -> x}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(s) = {}, Uargs(p) = {}, Uargs(-^#) = {}, Uargs(c_1) = {},
               Uargs(c_2) = {3}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              0() = [0]
                    [0]
                    [0]
              s(x1) = [1 0 0] x1 + [0]
                      [0 1 4]      [0]
                      [0 0 0]      [0]
              p(x1) = [4 0 0] x1 + [4]
                      [0 1 0]      [4]
                      [0 1 0]      [0]
              -^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [1]
                            [0 0 2]      [0 0 0]      [0]
                            [0 0 2]      [0 0 0]      [0]
              c_1(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [1 0 0] x3 + [0]
                                [0 0 1]      [0 0 0]      [0 0 0]      [0]
                                [0 0 1]      [0 0 0]      [0 0 0]      [0]
         
         * Path {4}: YES(?,O(1))
           ---------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(-) = {}, Uargs(s) = {}, Uargs(if) = {}, Uargs(greater) = {},
               Uargs(p) = {}, Uargs(-^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
               Uargs(p^#) = {}, Uargs(c_4) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              -(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                          [0 0 0]      [0 0 0]      [0]
                          [0 0 0]      [0 0 0]      [0]
              0() = [0]
                    [0]
                    [0]
              s(x1) = [0 0 0] x1 + [0]
                      [0 0 0]      [0]
                      [0 0 0]      [0]
              if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]
              greater(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
              p(x1) = [0 0 0] x1 + [0]
                      [0 0 0]      [0]
                      [0 0 0]      [0]
              -^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
              c_0() = [0]
                      [0]
                      [0]
              c_1(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
              p^#(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_3() = [0]
                      [0]
                      [0]
              c_4(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 3'
           --------------------------------------
           Answer:           YES(?,O(1))
           Input Problem:    DP runtime-complexity with respect to
             Strict Rules: {p^#(0()) -> c_3()}
             Weak Rules: {}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(p^#) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              0() = [2]
                    [2]
                    [2]
              p^#(x1) = [0 2 0] x1 + [7]
                        [2 2 0]      [3]
                        [2 2 2]      [3]
              c_3() = [0]
                      [1]
                      [1]
         
         * Path {5}: YES(?,O(n^3))
           -----------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(-) = {}, Uargs(s) = {}, Uargs(if) = {}, Uargs(greater) = {},
               Uargs(p) = {}, Uargs(-^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
               Uargs(p^#) = {}, Uargs(c_4) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              -(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                          [0 0 0]      [0 0 0]      [0]
                          [0 0 0]      [0 0 0]      [0]
              0() = [0]
                    [0]
                    [0]
              s(x1) = [1 3 3] x1 + [0]
                      [0 1 1]      [0]
                      [0 0 1]      [0]
              if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0 0 0]      [0]
              greater(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
              p(x1) = [0 0 0] x1 + [0]
                      [0 0 0]      [0]
                      [0 0 0]      [0]
              -^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
              c_0() = [0]
                      [0]
                      [0]
              c_1(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
              p^#(x1) = [1 3 3] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_3() = [0]
                      [0]
                      [0]
              c_4(x1) = [1 0 1] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 3'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    DP runtime-complexity with respect to
             Strict Rules: {p^#(s(x)) -> c_4(x)}
             Weak Rules: {}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_4) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              s(x1) = [1 2 2] x1 + [2]
                      [0 0 2]      [2]
                      [0 0 0]      [2]
              p^#(x1) = [2 2 2] x1 + [3]
                        [2 2 2]      [3]
                        [2 2 2]      [3]
              c_4(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [1]
                        [0 0 0]      [1]

Tool pair1rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 4.13

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  -(0(), y) -> 0()
     , -(x, 0()) -> x
     , -(x, s(y)) -> if(greater(x, s(y)), s(-(x, p(s(y)))), 0())
     , p(0()) -> 0()
     , p(s(x)) -> x}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3irc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 4.13

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  -(0(), y) -> 0()
     , -(x, 0()) -> x
     , -(x, s(y)) -> if(greater(x, s(y)), s(-(x, p(s(y)))), 0())
     , p(0()) -> 0()
     , p(s(x)) -> x}
  StartTerms: basic terms
  Strategy: innermost

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 4.13

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  -(0(), y) -> 0()
     , -(x, 0()) -> x
     , -(x, s(y)) -> if(greater(x, s(y)), s(-(x, p(s(y)))), 0())
     , p(0()) -> 0()
     , p(s(x)) -> x}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 4.13

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  -(0(), y) -> 0()
     , -(x, 0()) -> x
     , -(x, s(y)) -> if(greater(x, s(y)), s(-(x, p(s(y)))), 0())
     , p(0()) -> 0()
     , p(s(x)) -> x}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool tup3irc

Execution Time61.510876ms
Answer
TIMEOUT
InputSK90 4.13

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  -(0(), y) -> 0()
     , -(x, 0()) -> x
     , -(x, s(y)) -> if(greater(x, s(y)), s(-(x, p(s(y)))), 0())
     , p(0()) -> 0()
     , p(s(x)) -> x}
  StartTerms: basic terms
  Strategy: innermost

Certificate: TIMEOUT

Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..