Problem SK90 4.17

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputSK90 4.17

stdout:

MAYBE

Problem:
 fac(s(x)) -> *(fac(p(s(x))),s(x))
 p(s(0())) -> 0()
 p(s(s(x))) -> s(p(s(x)))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
YES(?,O(n^2))
InputSK90 4.17

stdout:

YES(?,O(n^2))

Tool IRC2

Execution TimeUnknown
Answer
YES(?,O(n^2))
InputSK90 4.17

stdout:

YES(?,O(n^2))

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           YES(?,O(n^2))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  fac(s(x)) -> *(fac(p(s(x))), s(x))
     , p(s(0())) -> 0()
     , p(s(s(x))) -> s(p(s(x)))}

Proof Output:    
  'wdg' proved the best result:
  
  Details:
  --------
    'wdg' succeeded with the following output:
     'wdg'
     -----
     Answer:           YES(?,O(n^2))
     Input Problem:    innermost runtime-complexity with respect to
       Rules:
         {  fac(s(x)) -> *(fac(p(s(x))), s(x))
          , p(s(0())) -> 0()
          , p(s(s(x))) -> s(p(s(x)))}
     
     Proof Output:    
       Transformation Details:
       -----------------------
         We have computed the following set of weak (innermost) dependency pairs:
         
           {  1: fac^#(s(x)) -> c_0(fac^#(p(s(x))))
            , 2: p^#(s(0())) -> c_1()
            , 3: p^#(s(s(x))) -> c_2(p^#(s(x)))}
         
         Following Dependency Graph (modulo SCCs) was computed. (Answers to
         subproofs are indicated to the right.)
         
           ->{3}                                                       [   YES(?,O(n^1))    ]
              |
              `->{2}                                                   [   YES(?,O(n^1))    ]
           
           ->{1}                                                       [   YES(?,O(n^2))    ]
           
         
       
       Sub-problems:
       -------------
         * Path {1}: YES(?,O(n^2))
           -----------------------
           
           The usable rules for this path are:
           
             {  p(s(0())) -> 0()
              , p(s(s(x))) -> s(p(s(x)))}
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(fac) = {}, Uargs(s) = {1}, Uargs(*) = {}, Uargs(p) = {},
               Uargs(fac^#) = {1}, Uargs(c_0) = {1}, Uargs(p^#) = {},
               Uargs(c_2) = {}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              fac(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              s(x1) = [1 0 3] x1 + [2]
                      [0 0 1]      [0]
                      [0 0 1]      [3]
              *(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                          [0 0 0]      [0 0 0]      [0]
                          [0 0 0]      [0 0 0]      [0]
              p(x1) = [1 0 0] x1 + [3]
                      [0 0 3]      [0]
                      [0 1 0]      [0]
              0() = [2]
                    [0]
                    [0]
              fac^#(x1) = [3 0 0] x1 + [0]
                          [3 3 3]      [0]
                          [3 3 3]      [0]
              c_0(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
              p^#(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_1() = [0]
                      [0]
                      [0]
              c_2(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
           Complexity induced by the adequate RMI: YES(?,O(n^2))
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 3'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {fac^#(s(x)) -> c_0(fac^#(p(s(x))))}
             Weak Rules:
               {  p(s(0())) -> 0()
                , p(s(s(x))) -> s(p(s(x)))}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(s) = {}, Uargs(p) = {}, Uargs(fac^#) = {}, Uargs(c_0) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              s(x1) = [0 0 1] x1 + [0]
                      [0 0 0]      [0]
                      [0 0 1]      [4]
              p(x1) = [2 0 0] x1 + [0]
                      [0 0 0]      [0]
                      [1 0 0]      [0]
              0() = [0]
                    [0]
                    [0]
              fac^#(x1) = [0 0 1] x1 + [4]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
              c_0(x1) = [1 0 0] x1 + [3]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
         
         * Path {3}: YES(?,O(n^1))
           -----------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(p) = {},
               Uargs(fac^#) = {}, Uargs(c_0) = {}, Uargs(p^#) = {},
               Uargs(c_2) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              fac(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              s(x1) = [0 0 0] x1 + [0]
                      [0 0 0]      [0]
                      [0 0 0]      [0]
              *(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                          [0 0 0]      [0 0 0]      [0]
                          [0 0 0]      [0 0 0]      [0]
              p(x1) = [0 0 0] x1 + [0]
                      [0 0 0]      [0]
                      [0 0 0]      [0]
              0() = [0]
                    [0]
                    [0]
              fac^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
              c_0(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              p^#(x1) = [0 0 0] x1 + [0]
                        [3 3 3]      [0]
                        [3 3 3]      [0]
              c_1() = [0]
                      [0]
                      [0]
              c_2(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 3'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {p^#(s(s(x))) -> c_2(p^#(s(x)))}
             Weak Rules: {}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              s(x1) = [0 0 0] x1 + [0]
                      [0 1 0]      [1]
                      [0 0 0]      [2]
              p^#(x1) = [0 1 0] x1 + [0]
                        [0 0 2]      [0]
                        [2 0 0]      [0]
              c_2(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 2]      [0]
         
         * Path {3}->{2}: YES(?,O(n^1))
           ----------------------------
           
           The usable rules of this path are empty.
           
           The weightgap principle applies, using the following adequate RMI:
             The following argument positions are usable:
               Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(p) = {},
               Uargs(fac^#) = {}, Uargs(c_0) = {}, Uargs(p^#) = {},
               Uargs(c_2) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              fac(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              s(x1) = [0 0 0] x1 + [0]
                      [0 0 0]      [0]
                      [0 0 0]      [0]
              *(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                          [0 0 0]      [0 0 0]      [0]
                          [0 0 0]      [0 0 0]      [0]
              p(x1) = [0 0 0] x1 + [0]
                      [0 0 0]      [0]
                      [0 0 0]      [0]
              0() = [0]
                    [0]
                    [0]
              fac^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
              c_0(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              p^#(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
              c_1() = [0]
                      [0]
                      [0]
              c_2(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
           
           We apply the sub-processor on the resulting sub-problem:
           
           'matrix-interpretation of dimension 3'
           --------------------------------------
           Answer:           YES(?,O(n^1))
           Input Problem:    innermost DP runtime-complexity with respect to
             Strict Rules: {p^#(s(0())) -> c_1()}
             Weak Rules: {p^#(s(s(x))) -> c_2(p^#(s(x)))}
           
           Proof Output:    
             The following argument positions are usable:
               Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
             We have the following constructor-restricted matrix interpretation:
             Interpretation Functions:
              s(x1) = [1 3 2] x1 + [0]
                      [0 0 0]      [0]
                      [0 0 0]      [0]
              0() = [0]
                    [2]
                    [0]
              p^#(x1) = [2 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [2 0 0]      [0]
              c_1() = [1]
                      [0]
                      [0]
              c_2(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [1 0 0]      [0]

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputSK90 4.17

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputSK90 4.17

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  fac(s(x)) -> *(fac(p(s(x))), s(x))
     , p(s(0())) -> 0()
     , p(s(s(x))) -> s(p(s(x)))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fac^#(s(x)) -> c_0(fac^#(p(s(x))), x)
              , 2: p^#(s(0())) -> c_1()
              , 3: p^#(s(s(x))) -> c_2(p^#(s(x)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [   YES(?,O(n^1))    ]
                |
                `->{2}                                                   [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  p(s(0())) -> 0()
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  fac^#(s(x)) -> c_0(fac^#(p(s(x))), x)
                  , p(s(0())) -> 0()
                  , p(s(s(x))) -> s(p(s(x)))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(p) = {},
                 Uargs(fac^#) = {}, Uargs(c_0) = {}, Uargs(p^#) = {},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                *(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                fac^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_0(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [3 3 3]      [0]
                          [3 3 3]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(s(x))) -> c_2(p^#(s(x)))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0 0 0] x1 + [0]
                        [0 1 0]      [1]
                        [0 0 0]      [2]
                p^#(x1) = [0 1 0] x1 + [0]
                          [0 0 2]      [0]
                          [2 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 2]      [0]
           
           * Path {3}->{2}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(p) = {},
                 Uargs(fac^#) = {}, Uargs(c_0) = {}, Uargs(p^#) = {},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                *(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                fac^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_0(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(0())) -> c_1()}
               Weak Rules: {p^#(s(s(x))) -> c_2(p^#(s(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 3 2] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [2]
                      [0]
                p^#(x1) = [2 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [2 0 0]      [0]
                c_1() = [1]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [1 0 0]      [0]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fac^#(s(x)) -> c_0(fac^#(p(s(x))), x)
              , 2: p^#(s(0())) -> c_1()
              , 3: p^#(s(s(x))) -> c_2(p^#(s(x)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [   YES(?,O(n^1))    ]
                |
                `->{2}                                                   [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  p(s(0())) -> 0()
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  fac^#(s(x)) -> c_0(fac^#(p(s(x))), x)
                  , p(s(0())) -> 0()
                  , p(s(s(x))) -> s(p(s(x)))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(p) = {},
                 Uargs(fac^#) = {}, Uargs(c_0) = {}, Uargs(p^#) = {},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                fac^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_0(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [3 3]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(s(x))) -> c_2(p^#(s(x)))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [1]
                        [0 0]      [0]
                p^#(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {3}->{2}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(p) = {},
                 Uargs(fac^#) = {}, Uargs(c_0) = {}, Uargs(p^#) = {},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                fac^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_0(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(0())) -> c_1()}
               Weak Rules: {p^#(s(s(x))) -> c_2(p^#(s(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0 2] x1 + [2]
                        [0 1]      [0]
                0() = [0]
                      [0]
                p^#(x1) = [2 0] x1 + [0]
                          [2 0]      [0]
                c_1() = [1]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 0]      [3]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fac^#(s(x)) -> c_0(fac^#(p(s(x))), x)
              , 2: p^#(s(0())) -> c_1()
              , 3: p^#(s(s(x))) -> c_2(p^#(s(x)))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [   YES(?,O(n^1))    ]
                |
                `->{2}                                                   [    YES(?,O(1))     ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  p(s(0())) -> 0()
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  fac^#(s(x)) -> c_0(fac^#(p(s(x))), x)
                  , p(s(0())) -> 0()
                  , p(s(s(x))) -> s(p(s(x)))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(p) = {},
                 Uargs(fac^#) = {}, Uargs(c_0) = {}, Uargs(p^#) = {},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0] x1 + [0]
                s(x1) = [1] x1 + [0]
                *(x1, x2) = [0] x1 + [0] x2 + [0]
                p(x1) = [0] x1 + [0]
                0() = [0]
                fac^#(x1) = [0] x1 + [0]
                c_0(x1, x2) = [0] x1 + [0] x2 + [0]
                p^#(x1) = [3] x1 + [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(s(x))) -> c_2(p^#(s(x)))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                p^#(x1) = [1] x1 + [0]
                c_2(x1) = [1] x1 + [3]
           
           * Path {3}->{2}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fac) = {}, Uargs(s) = {}, Uargs(*) = {}, Uargs(p) = {},
                 Uargs(fac^#) = {}, Uargs(c_0) = {}, Uargs(p^#) = {},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fac(x1) = [0] x1 + [0]
                s(x1) = [0] x1 + [0]
                *(x1, x2) = [0] x1 + [0] x2 + [0]
                p(x1) = [0] x1 + [0]
                0() = [0]
                fac^#(x1) = [0] x1 + [0]
                c_0(x1, x2) = [0] x1 + [0] x2 + [0]
                p^#(x1) = [0] x1 + [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(0())) -> c_1()}
               Weak Rules: {p^#(s(s(x))) -> c_2(p^#(s(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0] x1 + [3]
                0() = [0]
                p^#(x1) = [2] x1 + [2]
                c_1() = [1]
                c_2(x1) = [1] x1 + [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool pair1rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 4.17

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  fac(s(x)) -> *(fac(p(s(x))), s(x))
     , p(s(0())) -> 0()
     , p(s(s(x))) -> s(p(s(x)))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair2rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 4.17

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  fac(s(x)) -> *(fac(p(s(x))), s(x))
     , p(s(0())) -> 0()
     , p(s(s(x))) -> s(p(s(x)))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair2 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3irc

Execution TimeUnknown
Answer
YES(?,O(n^2))
InputSK90 4.17

stdout:

YES(?,O(n^2))

We consider the following Problem:

  Strict Trs:
    {  fac(s(x)) -> *(fac(p(s(x))), s(x))
     , p(s(0())) -> 0()
     , p(s(s(x))) -> s(p(s(x)))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^2))

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  The input problem contains no overlaps that give rise to inapplicable rules.
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  fac(s(x)) -> *(fac(p(s(x))), s(x))
     , p(s(0())) -> 0()
     , p(s(s(x))) -> s(p(s(x)))}
  StartTerms: basic terms
  Strategy: innermost
  
  1) 'Fastest' proved the goal fastest:
     
     'Sequentially' proved the goal fastest:
     
     'Fastest' succeeded:
     
     'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' proved the goal fastest:
     
     The following argument positions are usable:
       Uargs(fac) = {1}, Uargs(s) = {1}, Uargs(*) = {1}, Uargs(p) = {}
     We have the following constructor-restricted (at most 2 in the main diagonals) matrix interpretation:
     Interpretation Functions:
      fac(x1) = [1 0 1] x1 + [0]
                [0 0 0]      [0]
                [0 0 0]      [0]
      s(x1) = [1 0 1] x1 + [0]
              [0 0 1]      [0]
              [0 0 1]      [1]
      *(x1, x2) = [1 0 0] x1 + [0 0 0] x2 + [0]
                  [0 0 0]      [0 0 0]      [0]
                  [0 0 0]      [0 0 0]      [0]
      p(x1) = [1 0 0] x1 + [0]
              [0 0 2]      [0]
              [0 1 0]      [0]
      0() = [0]
            [0]
            [1]
  

Hurray, we answered YES(?,O(n^2))

Tool pair3rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 4.17

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  fac(s(x)) -> *(fac(p(s(x))), s(x))
     , p(s(0())) -> 0()
     , p(s(s(x))) -> s(p(s(x)))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 4.17

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  fac(s(x)) -> *(fac(p(s(x))), s(x))
     , p(s(0())) -> 0()
     , p(s(s(x))) -> s(p(s(x)))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool tup3irc

Execution Time28.563492ms
Answer
YES(?,O(n^2))
InputSK90 4.17

stdout:

YES(?,O(n^2))

We consider the following Problem:

  Strict Trs:
    {  fac(s(x)) -> *(fac(p(s(x))), s(x))
     , p(s(0())) -> 0()
     , p(s(s(x))) -> s(p(s(x)))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^2))

Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
  The input problem contains no overlaps that give rise to inapplicable rules.
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  fac(s(x)) -> *(fac(p(s(x))), s(x))
     , p(s(0())) -> 0()
     , p(s(s(x))) -> s(p(s(x)))}
  StartTerms: basic terms
  Strategy: innermost
  
  1) 'Fastest' proved the goal fastest:
     
     'Sequentially' proved the goal fastest:
     
     'Fastest' succeeded:
     
     'matrix-interpretation of dimension 3 (timeout of 100.0 seconds)' proved the goal fastest:
     
     The following argument positions are usable:
       Uargs(fac) = {1}, Uargs(s) = {1}, Uargs(*) = {1}, Uargs(p) = {}
     We have the following constructor-restricted (at most 2 in the main diagonals) matrix interpretation:
     Interpretation Functions:
      fac(x1) = [1 0 1] x1 + [0]
                [0 0 0]      [0]
                [0 0 0]      [0]
      s(x1) = [1 0 1] x1 + [0]
              [0 0 1]      [0]
              [0 0 1]      [1]
      *(x1, x2) = [1 0 0] x1 + [0 0 0] x2 + [0]
                  [0 0 0]      [0 0 0]      [0]
                  [0 0 0]      [0 0 0]      [0]
      p(x1) = [1 0 0] x1 + [0]
              [0 0 2]      [0]
              [0 1 0]      [0]
      0() = [0]
            [0]
            [1]
  

Hurray, we answered YES(?,O(n^2))