Tool CaT
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.30 |
---|
stdout:
YES(?,O(n^1))
Problem:
f(nil()) -> nil()
f(.(nil(),y)) -> .(nil(),f(y))
f(.(.(x,y),z)) -> f(.(x,.(y,z)))
g(nil()) -> nil()
g(.(x,nil())) -> .(g(x),nil())
g(.(x,.(y,z))) -> g(.(.(x,y),z))
Proof:
Bounds Processor:
bound: 1
enrichment: match
automaton:
final states: {4,3}
transitions:
g1(12) -> 14*
g1(7) -> 14*
g1(2) -> 14*
g1(16) -> 14,4
g1(1) -> 14*
.1(2,12) -> 8*
.1(3,5) -> 5,3
.1(16,2) -> 16*
.1(1,2) -> 7*
.1(1,8) -> 8*
.1(1,12) -> 8*
.1(12,1) -> 16*
.1(7,1) -> 16*
.1(2,1) -> 7*
.1(2,7) -> 8*
.1(14,3) -> 14,4
.1(16,1) -> 16*
.1(1,1) -> 12*
.1(1,7) -> 8*
.1(12,2) -> 16*
.1(7,2) -> 16*
.1(2,2) -> 7*
.1(2,8) -> 8*
nil1() -> 14,5,4,3
f1(12) -> 5*
f1(7) -> 5*
f1(2) -> 5*
f1(1) -> 5*
f1(8) -> 5,3
f0(2) -> 3*
f0(1) -> 3*
nil0() -> 1*
.0(1,2) -> 2*
.0(2,1) -> 2*
.0(1,1) -> 2*
.0(2,2) -> 2*
g0(2) -> 4*
g0(1) -> 4*
problem:
QedTool IRC1
Execution Time | Unknown |
---|
Answer | YES(?,O(n^3)) |
---|
Input | SK90 4.30 |
---|
stdout:
YES(?,O(n^3))
Tool IRC2
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.30 |
---|
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ f(nil()) -> nil()
, f(.(nil(), y)) -> .(nil(), f(y))
, f(.(.(x, y), z)) -> f(.(x, .(y, z)))
, g(nil()) -> nil()
, g(.(x, nil())) -> .(g(x), nil())
, g(.(x, .(y, z))) -> g(.(.(x, y), z))}
Proof Output:
'Bounds with perSymbol-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with perSymbol-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with perSymbol-enrichment and initial automaton 'match''
----------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ f(nil()) -> nil()
, f(.(nil(), y)) -> .(nil(), f(y))
, f(.(.(x, y), z)) -> f(.(x, .(y, z)))
, g(nil()) -> nil()
, g(.(x, nil())) -> .(g(x), nil())
, g(.(x, .(y, z))) -> g(.(.(x, y), z))}
Proof Output:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ f_0(2) -> 1
, f_0(3) -> 1
, f_1(2) -> 5
, f_1(3) -> 5
, f_1(6) -> 1
, f_1(6) -> 5
, f_1(7) -> 5
, nil_0() -> 2
, nil_1() -> 1
, nil_1() -> 4
, nil_1() -> 5
, nil_1() -> 8
, ._0(2, 2) -> 3
, ._0(2, 3) -> 3
, ._0(3, 2) -> 3
, ._0(3, 3) -> 3
, ._1(1, 5) -> 1
, ._1(2, 2) -> 7
, ._1(2, 3) -> 7
, ._1(2, 6) -> 6
, ._1(2, 7) -> 6
, ._1(3, 2) -> 7
, ._1(3, 3) -> 7
, ._1(3, 6) -> 6
, ._1(3, 7) -> 6
, ._1(5, 5) -> 5
, ._1(7, 2) -> 9
, ._1(7, 3) -> 9
, ._1(8, 4) -> 4
, ._1(8, 8) -> 8
, ._1(9, 2) -> 9
, ._1(9, 3) -> 9
, g_0(2) -> 4
, g_0(3) -> 4
, g_1(2) -> 8
, g_1(3) -> 8
, g_1(7) -> 8
, g_1(9) -> 4
, g_1(9) -> 8}Tool RC1
Execution Time | Unknown |
---|
Answer | YES(?,O(n^3)) |
---|
Input | SK90 4.30 |
---|
stdout:
YES(?,O(n^3))
Tool RC2
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.30 |
---|
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ f(nil()) -> nil()
, f(.(nil(), y)) -> .(nil(), f(y))
, f(.(.(x, y), z)) -> f(.(x, .(y, z)))
, g(nil()) -> nil()
, g(.(x, nil())) -> .(g(x), nil())
, g(.(x, .(y, z))) -> g(.(.(x, y), z))}
Proof Output:
'Bounds with perSymbol-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with perSymbol-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with perSymbol-enrichment and initial automaton 'match''
----------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ f(nil()) -> nil()
, f(.(nil(), y)) -> .(nil(), f(y))
, f(.(.(x, y), z)) -> f(.(x, .(y, z)))
, g(nil()) -> nil()
, g(.(x, nil())) -> .(g(x), nil())
, g(.(x, .(y, z))) -> g(.(.(x, y), z))}
Proof Output:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ f_0(2) -> 1
, f_0(3) -> 1
, f_1(2) -> 5
, f_1(3) -> 5
, f_1(6) -> 1
, f_1(6) -> 5
, f_1(7) -> 5
, nil_0() -> 2
, nil_1() -> 1
, nil_1() -> 4
, nil_1() -> 5
, nil_1() -> 8
, ._0(2, 2) -> 3
, ._0(2, 3) -> 3
, ._0(3, 2) -> 3
, ._0(3, 3) -> 3
, ._1(1, 5) -> 1
, ._1(2, 2) -> 7
, ._1(2, 3) -> 7
, ._1(2, 6) -> 6
, ._1(2, 7) -> 6
, ._1(3, 2) -> 7
, ._1(3, 3) -> 7
, ._1(3, 6) -> 6
, ._1(3, 7) -> 6
, ._1(5, 5) -> 5
, ._1(7, 2) -> 9
, ._1(7, 3) -> 9
, ._1(8, 4) -> 4
, ._1(8, 8) -> 8
, ._1(9, 2) -> 9
, ._1(9, 3) -> 9
, g_0(2) -> 4
, g_0(3) -> 4
, g_1(2) -> 8
, g_1(3) -> 8
, g_1(7) -> 8
, g_1(9) -> 4
, g_1(9) -> 8}Tool pair1rc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.30 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ f(nil()) -> nil()
, f(.(nil(), y)) -> .(nil(), f(y))
, f(.(.(x, y), z)) -> f(.(x, .(y, z)))
, g(nil()) -> nil()
, g(.(x, nil())) -> .(g(x), nil())
, g(.(x, .(y, z))) -> g(.(.(x, y), z))}
StartTerms: basic terms
Strategy: none
Certificate: YES(?,O(n^1))
Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
The processor is not applicable, reason is:
Input problem is not restricted to innermost rewriting
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ f(nil()) -> nil()
, f(.(nil(), y)) -> .(nil(), f(y))
, f(.(.(x, y), z)) -> f(.(x, .(y, z)))
, g(nil()) -> nil()
, g(.(x, nil())) -> .(g(x), nil())
, g(.(x, .(y, z))) -> g(.(.(x, y), z))}
StartTerms: basic terms
Strategy: none
1) 'Fastest' proved the goal fastest:
'Fastest' proved the goal fastest:
'Bounds with perSymbol-enrichment and initial automaton 'match'' proved the goal fastest:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ f_0(2) -> 1
, f_0(3) -> 1
, f_1(2) -> 5
, f_1(3) -> 5
, f_1(6) -> 1
, f_1(6) -> 5
, f_1(7) -> 5
, nil_0() -> 2
, nil_1() -> 1
, nil_1() -> 4
, nil_1() -> 5
, nil_1() -> 8
, ._0(2, 2) -> 3
, ._0(2, 3) -> 3
, ._0(3, 2) -> 3
, ._0(3, 3) -> 3
, ._1(1, 5) -> 1
, ._1(2, 2) -> 7
, ._1(2, 3) -> 7
, ._1(2, 6) -> 6
, ._1(2, 7) -> 6
, ._1(3, 2) -> 7
, ._1(3, 3) -> 7
, ._1(3, 6) -> 6
, ._1(3, 7) -> 6
, ._1(5, 5) -> 5
, ._1(7, 2) -> 9
, ._1(7, 3) -> 9
, ._1(8, 4) -> 4
, ._1(8, 8) -> 8
, ._1(9, 2) -> 9
, ._1(9, 3) -> 9
, g_0(2) -> 4
, g_0(3) -> 4
, g_1(2) -> 8
, g_1(3) -> 8
, g_1(7) -> 8
, g_1(9) -> 4
, g_1(9) -> 8}
Hurray, we answered YES(?,O(n^1))Tool pair2rc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.30 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ f(nil()) -> nil()
, f(.(nil(), y)) -> .(nil(), f(y))
, f(.(.(x, y), z)) -> f(.(x, .(y, z)))
, g(nil()) -> nil()
, g(.(x, nil())) -> .(g(x), nil())
, g(.(x, .(y, z))) -> g(.(.(x, y), z))}
StartTerms: basic terms
Strategy: none
Certificate: YES(?,O(n^1))
Application of 'pair2 (timeout of 60.0 seconds)':
-------------------------------------------------
The processor is not applicable, reason is:
Input problem is not restricted to innermost rewriting
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ f(nil()) -> nil()
, f(.(nil(), y)) -> .(nil(), f(y))
, f(.(.(x, y), z)) -> f(.(x, .(y, z)))
, g(nil()) -> nil()
, g(.(x, nil())) -> .(g(x), nil())
, g(.(x, .(y, z))) -> g(.(.(x, y), z))}
StartTerms: basic terms
Strategy: none
1) 'Fastest' proved the goal fastest:
'Fastest' proved the goal fastest:
'Bounds with perSymbol-enrichment and initial automaton 'match'' proved the goal fastest:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ f_0(2) -> 1
, f_0(3) -> 1
, f_1(2) -> 5
, f_1(3) -> 5
, f_1(6) -> 1
, f_1(6) -> 5
, f_1(7) -> 5
, nil_0() -> 2
, nil_1() -> 1
, nil_1() -> 4
, nil_1() -> 5
, nil_1() -> 8
, ._0(2, 2) -> 3
, ._0(2, 3) -> 3
, ._0(3, 2) -> 3
, ._0(3, 3) -> 3
, ._1(1, 5) -> 1
, ._1(2, 2) -> 7
, ._1(2, 3) -> 7
, ._1(2, 6) -> 6
, ._1(2, 7) -> 6
, ._1(3, 2) -> 7
, ._1(3, 3) -> 7
, ._1(3, 6) -> 6
, ._1(3, 7) -> 6
, ._1(5, 5) -> 5
, ._1(7, 2) -> 9
, ._1(7, 3) -> 9
, ._1(8, 4) -> 4
, ._1(8, 8) -> 8
, ._1(9, 2) -> 9
, ._1(9, 3) -> 9
, g_0(2) -> 4
, g_0(3) -> 4
, g_1(2) -> 8
, g_1(3) -> 8
, g_1(7) -> 8
, g_1(9) -> 4
, g_1(9) -> 8}
Hurray, we answered YES(?,O(n^1))Tool pair3irc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.30 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ f(nil()) -> nil()
, f(.(nil(), y)) -> .(nil(), f(y))
, f(.(.(x, y), z)) -> f(.(x, .(y, z)))
, g(nil()) -> nil()
, g(.(x, nil())) -> .(g(x), nil())
, g(.(x, .(y, z))) -> g(.(.(x, y), z))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
The input problem contains no overlaps that give rise to inapplicable rules.
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ f(nil()) -> nil()
, f(.(nil(), y)) -> .(nil(), f(y))
, f(.(.(x, y), z)) -> f(.(x, .(y, z)))
, g(nil()) -> nil()
, g(.(x, nil())) -> .(g(x), nil())
, g(.(x, .(y, z))) -> g(.(.(x, y), z))}
StartTerms: basic terms
Strategy: innermost
1) 'Fastest' proved the goal fastest:
'Fastest' proved the goal fastest:
'Bounds with perSymbol-enrichment and initial automaton 'match'' proved the goal fastest:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ f_0(2) -> 1
, f_0(3) -> 1
, f_1(2) -> 5
, f_1(3) -> 5
, f_1(6) -> 1
, f_1(6) -> 5
, f_1(7) -> 5
, nil_0() -> 2
, nil_1() -> 1
, nil_1() -> 4
, nil_1() -> 5
, nil_1() -> 8
, ._0(2, 2) -> 3
, ._0(2, 3) -> 3
, ._0(3, 2) -> 3
, ._0(3, 3) -> 3
, ._1(1, 5) -> 1
, ._1(2, 2) -> 7
, ._1(2, 3) -> 7
, ._1(2, 6) -> 6
, ._1(2, 7) -> 6
, ._1(3, 2) -> 7
, ._1(3, 3) -> 7
, ._1(3, 6) -> 6
, ._1(3, 7) -> 6
, ._1(5, 5) -> 5
, ._1(7, 2) -> 9
, ._1(7, 3) -> 9
, ._1(8, 4) -> 4
, ._1(8, 8) -> 8
, ._1(9, 2) -> 9
, ._1(9, 3) -> 9
, g_0(2) -> 4
, g_0(3) -> 4
, g_1(2) -> 8
, g_1(3) -> 8
, g_1(7) -> 8
, g_1(9) -> 4
, g_1(9) -> 8}
Hurray, we answered YES(?,O(n^1))Tool pair3rc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.30 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ f(nil()) -> nil()
, f(.(nil(), y)) -> .(nil(), f(y))
, f(.(.(x, y), z)) -> f(.(x, .(y, z)))
, g(nil()) -> nil()
, g(.(x, nil())) -> .(g(x), nil())
, g(.(x, .(y, z))) -> g(.(.(x, y), z))}
StartTerms: basic terms
Strategy: none
Certificate: YES(?,O(n^1))
Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
The processor is not applicable, reason is:
Input problem is not restricted to innermost rewriting
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ f(nil()) -> nil()
, f(.(nil(), y)) -> .(nil(), f(y))
, f(.(.(x, y), z)) -> f(.(x, .(y, z)))
, g(nil()) -> nil()
, g(.(x, nil())) -> .(g(x), nil())
, g(.(x, .(y, z))) -> g(.(.(x, y), z))}
StartTerms: basic terms
Strategy: none
1) 'Fastest' proved the goal fastest:
'Fastest' proved the goal fastest:
'Bounds with perSymbol-enrichment and initial automaton 'match'' proved the goal fastest:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ f_0(2) -> 1
, f_0(3) -> 1
, f_1(2) -> 5
, f_1(3) -> 5
, f_1(6) -> 1
, f_1(6) -> 5
, f_1(7) -> 5
, nil_0() -> 2
, nil_1() -> 1
, nil_1() -> 4
, nil_1() -> 5
, nil_1() -> 8
, ._0(2, 2) -> 3
, ._0(2, 3) -> 3
, ._0(3, 2) -> 3
, ._0(3, 3) -> 3
, ._1(1, 5) -> 1
, ._1(2, 2) -> 7
, ._1(2, 3) -> 7
, ._1(2, 6) -> 6
, ._1(2, 7) -> 6
, ._1(3, 2) -> 7
, ._1(3, 3) -> 7
, ._1(3, 6) -> 6
, ._1(3, 7) -> 6
, ._1(5, 5) -> 5
, ._1(7, 2) -> 9
, ._1(7, 3) -> 9
, ._1(8, 4) -> 4
, ._1(8, 8) -> 8
, ._1(9, 2) -> 9
, ._1(9, 3) -> 9
, g_0(2) -> 4
, g_0(3) -> 4
, g_1(2) -> 8
, g_1(3) -> 8
, g_1(7) -> 8
, g_1(9) -> 4
, g_1(9) -> 8}
Hurray, we answered YES(?,O(n^1))Tool rc
Execution Time | Unknown |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.30 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ f(nil()) -> nil()
, f(.(nil(), y)) -> .(nil(), f(y))
, f(.(.(x, y), z)) -> f(.(x, .(y, z)))
, g(nil()) -> nil()
, g(.(x, nil())) -> .(g(x), nil())
, g(.(x, .(y, z))) -> g(.(.(x, y), z))}
StartTerms: basic terms
Strategy: none
Certificate: YES(?,O(n^1))
Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
'Fastest' proved the goal fastest:
'Fastest' proved the goal fastest:
'Bounds with perSymbol-enrichment and initial automaton 'match' (timeout of 5.0 seconds)' proved the goal fastest:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ f_0(2) -> 1
, f_0(3) -> 1
, f_1(2) -> 5
, f_1(3) -> 5
, f_1(6) -> 1
, f_1(6) -> 5
, f_1(7) -> 5
, nil_0() -> 2
, nil_1() -> 1
, nil_1() -> 4
, nil_1() -> 5
, nil_1() -> 8
, ._0(2, 2) -> 3
, ._0(2, 3) -> 3
, ._0(3, 2) -> 3
, ._0(3, 3) -> 3
, ._1(1, 5) -> 1
, ._1(2, 2) -> 7
, ._1(2, 3) -> 7
, ._1(2, 6) -> 6
, ._1(2, 7) -> 6
, ._1(3, 2) -> 7
, ._1(3, 3) -> 7
, ._1(3, 6) -> 6
, ._1(3, 7) -> 6
, ._1(5, 5) -> 5
, ._1(7, 2) -> 9
, ._1(7, 3) -> 9
, ._1(8, 4) -> 4
, ._1(8, 8) -> 8
, ._1(9, 2) -> 9
, ._1(9, 3) -> 9
, g_0(2) -> 4
, g_0(3) -> 4
, g_1(2) -> 8
, g_1(3) -> 8
, g_1(7) -> 8
, g_1(9) -> 4
, g_1(9) -> 8}
Hurray, we answered YES(?,O(n^1))Tool tup3irc
Execution Time | 8.5412025e-2ms |
---|
Answer | YES(?,O(n^1)) |
---|
Input | SK90 4.30 |
---|
stdout:
YES(?,O(n^1))
We consider the following Problem:
Strict Trs:
{ f(nil()) -> nil()
, f(.(nil(), y)) -> .(nil(), f(y))
, f(.(.(x, y), z)) -> f(.(x, .(y, z)))
, g(nil()) -> nil()
, g(.(x, nil())) -> .(g(x), nil())
, g(.(x, .(y, z))) -> g(.(.(x, y), z))}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
The input problem contains no overlaps that give rise to inapplicable rules.
We abort the transformation and continue with the subprocessor on the problem
Strict Trs:
{ f(nil()) -> nil()
, f(.(nil(), y)) -> .(nil(), f(y))
, f(.(.(x, y), z)) -> f(.(x, .(y, z)))
, g(nil()) -> nil()
, g(.(x, nil())) -> .(g(x), nil())
, g(.(x, .(y, z))) -> g(.(.(x, y), z))}
StartTerms: basic terms
Strategy: innermost
1) 'Fastest' proved the goal fastest:
'Fastest' proved the goal fastest:
'Bounds with perSymbol-enrichment and initial automaton 'match'' proved the goal fastest:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ f_0(2) -> 1
, f_0(3) -> 1
, f_1(2) -> 5
, f_1(3) -> 5
, f_1(6) -> 1
, f_1(6) -> 5
, f_1(7) -> 5
, nil_0() -> 2
, nil_1() -> 1
, nil_1() -> 4
, nil_1() -> 5
, nil_1() -> 8
, ._0(2, 2) -> 3
, ._0(2, 3) -> 3
, ._0(3, 2) -> 3
, ._0(3, 3) -> 3
, ._1(1, 5) -> 1
, ._1(2, 2) -> 7
, ._1(2, 3) -> 7
, ._1(2, 6) -> 6
, ._1(2, 7) -> 6
, ._1(3, 2) -> 7
, ._1(3, 3) -> 7
, ._1(3, 6) -> 6
, ._1(3, 7) -> 6
, ._1(5, 5) -> 5
, ._1(7, 2) -> 9
, ._1(7, 3) -> 9
, ._1(8, 4) -> 4
, ._1(8, 8) -> 8
, ._1(9, 2) -> 9
, ._1(9, 3) -> 9
, g_0(2) -> 4
, g_0(3) -> 4
, g_1(2) -> 8
, g_1(3) -> 8
, g_1(7) -> 8
, g_1(9) -> 4
, g_1(9) -> 8}
Hurray, we answered YES(?,O(n^1))