Problem SK90 4.59

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputSK90 4.59

stdout:

MAYBE

Problem:
 qsort(nil()) -> nil()
 qsort(.(x,y)) -> ++(qsort(lowers(x,y)),.(x,qsort(greaters(x,y))))
 lowers(x,nil()) -> nil()
 lowers(x,.(y,z)) -> if(<=(y,x),.(y,lowers(x,z)),lowers(x,z))
 greaters(x,nil()) -> nil()
 greaters(x,.(y,z)) -> if(<=(y,x),greaters(x,z),.(y,greaters(x,z)))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputSK90 4.59

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputSK90 4.59

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  qsort(nil()) -> nil()
     , qsort(.(x, y)) ->
       ++(qsort(lowers(x, y)), .(x, qsort(greaters(x, y))))
     , lowers(x, nil()) -> nil()
     , lowers(x, .(y, z)) ->
       if(&lt;=(y, x), .(y, lowers(x, z)), lowers(x, z))
     , greaters(x, nil()) -> nil()
     , greaters(x, .(y, z)) ->
       if(&lt;=(y, x), greaters(x, z), .(y, greaters(x, z)))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: qsort^#(nil()) -> c_0()
              , 2: qsort^#(.(x, y)) ->
                   c_1(qsort^#(lowers(x, y)), qsort^#(greaters(x, y)))
              , 3: lowers^#(x, nil()) -> c_2()
              , 4: lowers^#(x, .(y, z)) -> c_3(lowers^#(x, z), lowers^#(x, z))
              , 5: greaters^#(x, nil()) -> c_4()
              , 6: greaters^#(x, .(y, z)) ->
                   c_5(greaters^#(x, z), greaters^#(x, z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [         NA         ]
                |
                `->{5}                                                   [         NA         ]
             
             ->{4}                                                       [       MAYBE        ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [     inherited      ]
                |
                `->{1}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{1}.
           
           * Path {2}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  lowers(x, nil()) -> nil()
                , lowers(x, .(y, z)) ->
                  if(&lt;=(y, x), .(y, lowers(x, z)), lowers(x, z))
                , greaters(x, nil()) -> nil()
                , greaters(x, .(y, z)) ->
                  if(&lt;=(y, x), greaters(x, z), .(y, greaters(x, z)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {1, 2}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                .(x1, x2) = [1 3 3] x1 + [0 0 0] x2 + [0]
                            [0 1 3]      [0 0 0]      [0]
                            [0 0 1]      [0 0 0]      [0]
                ++(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                lowers(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                greaters(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                &lt;=(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                qsort^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                lowers^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [3 3 3]      [3 3 3]      [0]
                                   [3 3 3]      [3 3 3]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [0 1 0]      [0 1 0]      [0]
                              [0 0 1]      [0 0 1]      [0]
                greaters^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {lowers^#(x, .(y, z)) -> c_3(lowers^#(x, z), lowers^#(x, z))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}->{3}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {1, 2}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                .(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                ++(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                lowers(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                greaters(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                &lt;=(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                qsort^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                lowers^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [0 1 0]      [0 1 0]      [0]
                              [0 0 1]      [0 0 1]      [0]
                greaters^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                .(x1, x2) = [1 3 3] x1 + [0 0 0] x2 + [0]
                            [0 1 3]      [0 0 0]      [0]
                            [0 0 1]      [0 0 0]      [0]
                ++(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                lowers(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                greaters(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                &lt;=(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                qsort^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                lowers^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                greaters^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [3 3 3]      [3 3 3]      [0]
                                     [3 3 3]      [3 3 3]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [0 1 0]      [0 1 0]      [0]
                              [0 0 1]      [0 0 1]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6}->{5}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                .(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                ++(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                lowers(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                greaters(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                &lt;=(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                qsort^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                lowers^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                greaters^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [0 1 0]      [0 1 0]      [0]
                              [0 0 1]      [0 0 1]      [0]
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: qsort^#(nil()) -> c_0()
              , 2: qsort^#(.(x, y)) ->
                   c_1(qsort^#(lowers(x, y)), qsort^#(greaters(x, y)))
              , 3: lowers^#(x, nil()) -> c_2()
              , 4: lowers^#(x, .(y, z)) -> c_3(lowers^#(x, z), lowers^#(x, z))
              , 5: greaters^#(x, nil()) -> c_4()
              , 6: greaters^#(x, .(y, z)) ->
                   c_5(greaters^#(x, z), greaters^#(x, z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [       MAYBE        ]
                |
                `->{5}                                                   [         NA         ]
             
             ->{4}                                                       [         NA         ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [     inherited      ]
                |
                `->{1}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{1}.
           
           * Path {2}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  lowers(x, nil()) -> nil()
                , lowers(x, .(y, z)) ->
                  if(&lt;=(y, x), .(y, lowers(x, z)), lowers(x, z))
                , greaters(x, nil()) -> nil()
                , greaters(x, .(y, z)) ->
                  if(&lt;=(y, x), greaters(x, z), .(y, greaters(x, z)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {1, 2}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                nil() = [0]
                        [0]
                .(x1, x2) = [1 3] x1 + [0 0] x2 + [0]
                            [0 1]      [0 0]      [0]
                ++(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                lowers(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                greaters(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                &lt;=(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                qsort^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                lowers^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [3 3]      [3 3]      [0]
                c_2() = [0]
                        [0]
                c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 1]      [0 1]      [0]
                greaters^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{3}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {1, 2}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                nil() = [0]
                        [0]
                .(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                ++(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                lowers(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                greaters(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                &lt;=(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                qsort^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                lowers^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 1]      [0 1]      [0]
                greaters^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                nil() = [0]
                        [0]
                .(x1, x2) = [1 3] x1 + [0 0] x2 + [0]
                            [0 1]      [0 0]      [0]
                ++(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                lowers(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                greaters(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                &lt;=(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                qsort^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                lowers^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                greaters^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [3 3]      [3 3]      [0]
                c_4() = [0]
                        [0]
                c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 1]      [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {greaters^#(x, .(y, z)) -> c_5(greaters^#(x, z), greaters^#(x, z))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6}->{5}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                nil() = [0]
                        [0]
                .(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                ++(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                lowers(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                greaters(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                &lt;=(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                qsort^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                lowers^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                greaters^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 1]      [0 1]      [0]
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: qsort^#(nil()) -> c_0()
              , 2: qsort^#(.(x, y)) ->
                   c_1(qsort^#(lowers(x, y)), qsort^#(greaters(x, y)))
              , 3: lowers^#(x, nil()) -> c_2()
              , 4: lowers^#(x, .(y, z)) -> c_3(lowers^#(x, z), lowers^#(x, z))
              , 5: greaters^#(x, nil()) -> c_4()
              , 6: greaters^#(x, .(y, z)) ->
                   c_5(greaters^#(x, z), greaters^#(x, z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [       MAYBE        ]
                |
                `->{5}                                                   [         NA         ]
             
             ->{4}                                                       [         NA         ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [     inherited      ]
                |
                `->{1}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{1}.
           
           * Path {2}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  lowers(x, nil()) -> nil()
                , lowers(x, .(y, z)) ->
                  if(&lt;=(y, x), .(y, lowers(x, z)), lowers(x, z))
                , greaters(x, nil()) -> nil()
                , greaters(x, .(y, z)) ->
                  if(&lt;=(y, x), greaters(x, z), .(y, greaters(x, z)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {1, 2}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0] x1 + [0]
                nil() = [0]
                .(x1, x2) = [1] x1 + [0] x2 + [0]
                ++(x1, x2) = [0] x1 + [0] x2 + [0]
                lowers(x1, x2) = [0] x1 + [0] x2 + [0]
                greaters(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                &lt;=(x1, x2) = [0] x1 + [0] x2 + [0]
                qsort^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1, x2) = [0] x1 + [0] x2 + [0]
                lowers^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1, x2) = [1] x1 + [1] x2 + [0]
                greaters^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1, x2) = [0] x1 + [0] x2 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{3}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {1, 2}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0] x1 + [0]
                nil() = [0]
                .(x1, x2) = [0] x1 + [0] x2 + [0]
                ++(x1, x2) = [0] x1 + [0] x2 + [0]
                lowers(x1, x2) = [0] x1 + [0] x2 + [0]
                greaters(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                &lt;=(x1, x2) = [0] x1 + [0] x2 + [0]
                qsort^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1, x2) = [0] x1 + [0] x2 + [0]
                lowers^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1, x2) = [1] x1 + [1] x2 + [0]
                greaters^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1, x2) = [0] x1 + [0] x2 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0] x1 + [0]
                nil() = [0]
                .(x1, x2) = [1] x1 + [0] x2 + [0]
                ++(x1, x2) = [0] x1 + [0] x2 + [0]
                lowers(x1, x2) = [0] x1 + [0] x2 + [0]
                greaters(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                &lt;=(x1, x2) = [0] x1 + [0] x2 + [0]
                qsort^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1, x2) = [0] x1 + [0] x2 + [0]
                lowers^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1, x2) = [0] x1 + [0] x2 + [0]
                greaters^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1, x2) = [1] x1 + [1] x2 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {greaters^#(x, .(y, z)) -> c_5(greaters^#(x, z), greaters^#(x, z))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6}->{5}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {1, 2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0] x1 + [0]
                nil() = [0]
                .(x1, x2) = [0] x1 + [0] x2 + [0]
                ++(x1, x2) = [0] x1 + [0] x2 + [0]
                lowers(x1, x2) = [0] x1 + [0] x2 + [0]
                greaters(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                &lt;=(x1, x2) = [0] x1 + [0] x2 + [0]
                qsort^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1, x2) = [0] x1 + [0] x2 + [0]
                lowers^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1, x2) = [0] x1 + [0] x2 + [0]
                greaters^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1, x2) = [1] x1 + [1] x2 + [0]
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputSK90 4.59

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputSK90 4.59

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  qsort(nil()) -> nil()
     , qsort(.(x, y)) ->
       ++(qsort(lowers(x, y)), .(x, qsort(greaters(x, y))))
     , lowers(x, nil()) -> nil()
     , lowers(x, .(y, z)) ->
       if(&lt;=(y, x), .(y, lowers(x, z)), lowers(x, z))
     , greaters(x, nil()) -> nil()
     , greaters(x, .(y, z)) ->
       if(&lt;=(y, x), greaters(x, z), .(y, greaters(x, z)))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: qsort^#(nil()) -> c_0()
              , 2: qsort^#(.(x, y)) ->
                   c_1(qsort^#(lowers(x, y)), x, qsort^#(greaters(x, y)))
              , 3: lowers^#(x, nil()) -> c_2()
              , 4: lowers^#(x, .(y, z)) ->
                   c_3(y, x, y, lowers^#(x, z), lowers^#(x, z))
              , 5: greaters^#(x, nil()) -> c_4()
              , 6: greaters^#(x, .(y, z)) ->
                   c_5(y, x, greaters^#(x, z), y, greaters^#(x, z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [         NA         ]
                |
                `->{5}                                                   [         NA         ]
             
             ->{4}                                                       [       MAYBE        ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [     inherited      ]
                |
                `->{1}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{1}.
           
           * Path {2}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  lowers(x, nil()) -> nil()
                , lowers(x, .(y, z)) ->
                  if(&lt;=(y, x), .(y, lowers(x, z)), lowers(x, z))
                , greaters(x, nil()) -> nil()
                , greaters(x, .(y, z)) ->
                  if(&lt;=(y, x), greaters(x, z), .(y, greaters(x, z)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {4, 5}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                .(x1, x2) = [1 3 3] x1 + [1 3 3] x2 + [0]
                            [0 1 3]      [0 1 3]      [0]
                            [0 0 1]      [0 0 1]      [0]
                ++(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                lowers(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                greaters(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                &lt;=(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                qsort^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                lowers^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [3 3 3]      [3 3 3]      [0]
                                   [3 3 3]      [3 3 3]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [1 0 0] x4 + [1 0 0] x5 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 1 0]      [0 1 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 1]      [0 0 1]      [0]
                greaters^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {lowers^#(x, .(y, z)) ->
                  c_3(y, x, y, lowers^#(x, z), lowers^#(x, z))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}->{3}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {4, 5}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                .(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                ++(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                lowers(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                greaters(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                &lt;=(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                qsort^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                lowers^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [1 0 0] x4 + [1 0 0] x5 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 1 0]      [0 1 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 1]      [0 0 1]      [0]
                greaters^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {3, 5}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                .(x1, x2) = [1 3 3] x1 + [1 3 3] x2 + [0]
                            [0 1 3]      [0 1 3]      [0]
                            [0 0 1]      [0 0 1]      [0]
                ++(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                lowers(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                greaters(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                &lt;=(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                qsort^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                lowers^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                greaters^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [3 3 3]      [3 3 3]      [0]
                                     [3 3 3]      [3 3 3]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [1 0 0] x3 + [0 0 0] x4 + [1 0 0] x5 + [0]
                                          [0 0 0]      [0 0 0]      [0 1 0]      [0 0 0]      [0 1 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 1]      [0 0 0]      [0 0 1]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6}->{5}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {3, 5}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                .(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                ++(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                lowers(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                greaters(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                &lt;=(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                qsort^#(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                lowers^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                   [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                greaters^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                     [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [1 0 0] x3 + [0 0 0] x4 + [1 0 0] x5 + [0]
                                          [0 0 0]      [0 0 0]      [0 1 0]      [0 0 0]      [0 1 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 1]      [0 0 0]      [0 0 1]      [0]
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: qsort^#(nil()) -> c_0()
              , 2: qsort^#(.(x, y)) ->
                   c_1(qsort^#(lowers(x, y)), x, qsort^#(greaters(x, y)))
              , 3: lowers^#(x, nil()) -> c_2()
              , 4: lowers^#(x, .(y, z)) ->
                   c_3(y, x, y, lowers^#(x, z), lowers^#(x, z))
              , 5: greaters^#(x, nil()) -> c_4()
              , 6: greaters^#(x, .(y, z)) ->
                   c_5(y, x, greaters^#(x, z), y, greaters^#(x, z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [       MAYBE        ]
                |
                `->{5}                                                   [         NA         ]
             
             ->{4}                                                       [         NA         ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [     inherited      ]
                |
                `->{1}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{1}.
           
           * Path {2}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  lowers(x, nil()) -> nil()
                , lowers(x, .(y, z)) ->
                  if(&lt;=(y, x), .(y, lowers(x, z)), lowers(x, z))
                , greaters(x, nil()) -> nil()
                , greaters(x, .(y, z)) ->
                  if(&lt;=(y, x), greaters(x, z), .(y, greaters(x, z)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {4, 5}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                nil() = [0]
                        [0]
                .(x1, x2) = [1 3] x1 + [1 3] x2 + [0]
                            [0 1]      [0 1]      [0]
                ++(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                lowers(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                greaters(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                &lt;=(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                qsort^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                lowers^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [3 3]      [3 3]      [0]
                c_2() = [0]
                        [0]
                c_3(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [1 0] x4 + [1 0] x5 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 1]      [0 1]      [0]
                greaters^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{3}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {4, 5}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                nil() = [0]
                        [0]
                .(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                ++(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                lowers(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                greaters(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                &lt;=(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                qsort^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                lowers^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [1 0] x4 + [1 0] x5 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 1]      [0 1]      [0]
                greaters^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {3, 5}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                nil() = [0]
                        [0]
                .(x1, x2) = [1 3] x1 + [1 3] x2 + [0]
                            [0 1]      [0 1]      [0]
                ++(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                lowers(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                greaters(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                &lt;=(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                qsort^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                lowers^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                greaters^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [3 3]      [3 3]      [0]
                c_4() = [0]
                        [0]
                c_5(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [1 0] x3 + [0 0] x4 + [1 0] x5 + [0]
                                          [0 0]      [0 0]      [0 1]      [0 0]      [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {greaters^#(x, .(y, z)) ->
                  c_5(y, x, greaters^#(x, z), y, greaters^#(x, z))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6}->{5}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {3, 5}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                nil() = [0]
                        [0]
                .(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                ++(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                lowers(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                greaters(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                &lt;=(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                qsort^#(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                lowers^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                   [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                greaters^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                     [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [1 0] x3 + [0 0] x4 + [1 0] x5 + [0]
                                          [0 0]      [0 0]      [0 1]      [0 0]      [0 1]      [0]
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: qsort^#(nil()) -> c_0()
              , 2: qsort^#(.(x, y)) ->
                   c_1(qsort^#(lowers(x, y)), x, qsort^#(greaters(x, y)))
              , 3: lowers^#(x, nil()) -> c_2()
              , 4: lowers^#(x, .(y, z)) ->
                   c_3(y, x, y, lowers^#(x, z), lowers^#(x, z))
              , 5: greaters^#(x, nil()) -> c_4()
              , 6: greaters^#(x, .(y, z)) ->
                   c_5(y, x, greaters^#(x, z), y, greaters^#(x, z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [       MAYBE        ]
                |
                `->{5}                                                   [         NA         ]
             
             ->{4}                                                       [         NA         ]
                |
                `->{3}                                                   [         NA         ]
             
             ->{2}                                                       [     inherited      ]
                |
                `->{1}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{1}.
           
           * Path {2}->{1}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  lowers(x, nil()) -> nil()
                , lowers(x, .(y, z)) ->
                  if(&lt;=(y, x), .(y, lowers(x, z)), lowers(x, z))
                , greaters(x, nil()) -> nil()
                , greaters(x, .(y, z)) ->
                  if(&lt;=(y, x), greaters(x, z), .(y, greaters(x, z)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {4, 5}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0] x1 + [0]
                nil() = [0]
                .(x1, x2) = [1] x1 + [1] x2 + [0]
                ++(x1, x2) = [0] x1 + [0] x2 + [0]
                lowers(x1, x2) = [0] x1 + [0] x2 + [0]
                greaters(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                &lt;=(x1, x2) = [0] x1 + [0] x2 + [0]
                qsort^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                lowers^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [1] x4 + [1] x5 + [0]
                greaters^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{3}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {4, 5}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0] x1 + [0]
                nil() = [0]
                .(x1, x2) = [0] x1 + [0] x2 + [0]
                ++(x1, x2) = [0] x1 + [0] x2 + [0]
                lowers(x1, x2) = [0] x1 + [0] x2 + [0]
                greaters(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                &lt;=(x1, x2) = [0] x1 + [0] x2 + [0]
                qsort^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                lowers^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [1] x4 + [1] x5 + [0]
                greaters^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {3, 5}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0] x1 + [0]
                nil() = [0]
                .(x1, x2) = [1] x1 + [1] x2 + [0]
                ++(x1, x2) = [0] x1 + [0] x2 + [0]
                lowers(x1, x2) = [0] x1 + [0] x2 + [0]
                greaters(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                &lt;=(x1, x2) = [0] x1 + [0] x2 + [0]
                qsort^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                lowers^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                greaters^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [1] x3 + [0] x4 + [1] x5 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {greaters^#(x, .(y, z)) ->
                  c_5(y, x, greaters^#(x, z), y, greaters^#(x, z))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6}->{5}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(qsort) = {}, Uargs(.) = {}, Uargs(++) = {},
                 Uargs(lowers) = {}, Uargs(greaters) = {}, Uargs(if) = {},
                 Uargs(&lt;=) = {}, Uargs(qsort^#) = {}, Uargs(c_1) = {},
                 Uargs(lowers^#) = {}, Uargs(c_3) = {}, Uargs(greaters^#) = {},
                 Uargs(c_5) = {3, 5}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                qsort(x1) = [0] x1 + [0]
                nil() = [0]
                .(x1, x2) = [0] x1 + [0] x2 + [0]
                ++(x1, x2) = [0] x1 + [0] x2 + [0]
                lowers(x1, x2) = [0] x1 + [0] x2 + [0]
                greaters(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                &lt;=(x1, x2) = [0] x1 + [0] x2 + [0]
                qsort^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                lowers^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                greaters^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [1] x3 + [0] x4 + [1] x5 + [0]
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool pair1rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 4.59

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  qsort(nil()) -> nil()
     , qsort(.(x, y)) ->
       ++(qsort(lowers(x, y)), .(x, qsort(greaters(x, y))))
     , lowers(x, nil()) -> nil()
     , lowers(x, .(y, z)) ->
       if(&lt;=(y, x), .(y, lowers(x, z)), lowers(x, z))
     , greaters(x, nil()) -> nil()
     , greaters(x, .(y, z)) ->
       if(&lt;=(y, x), greaters(x, z), .(y, greaters(x, z)))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair2rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 4.59

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  qsort(nil()) -> nil()
     , qsort(.(x, y)) ->
       ++(qsort(lowers(x, y)), .(x, qsort(greaters(x, y))))
     , lowers(x, nil()) -> nil()
     , lowers(x, .(y, z)) ->
       if(&lt;=(y, x), .(y, lowers(x, z)), lowers(x, z))
     , greaters(x, nil()) -> nil()
     , greaters(x, .(y, z)) ->
       if(&lt;=(y, x), greaters(x, z), .(y, greaters(x, z)))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair2 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 4.59

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  qsort(nil()) -> nil()
     , qsort(.(x, y)) ->
       ++(qsort(lowers(x, y)), .(x, qsort(greaters(x, y))))
     , lowers(x, nil()) -> nil()
     , lowers(x, .(y, z)) ->
       if(&lt;=(y, x), .(y, lowers(x, z)), lowers(x, z))
     , greaters(x, nil()) -> nil()
     , greaters(x, .(y, z)) ->
       if(&lt;=(y, x), greaters(x, z), .(y, greaters(x, z)))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool rc

Execution TimeUnknown
Answer
TIMEOUT
InputSK90 4.59

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  qsort(nil()) -> nil()
     , qsort(.(x, y)) ->
       ++(qsort(lowers(x, y)), .(x, qsort(greaters(x, y))))
     , lowers(x, nil()) -> nil()
     , lowers(x, .(y, z)) ->
       if(&lt;=(y, x), .(y, lowers(x, z)), lowers(x, z))
     , greaters(x, nil()) -> nil()
     , greaters(x, .(y, z)) ->
       if(&lt;=(y, x), greaters(x, z), .(y, greaters(x, z)))}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool tup3irc

Execution Time69.59177ms
Answer
TIMEOUT
InputSK90 4.59

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  qsort(nil()) -> nil()
     , qsort(.(x, y)) ->
       ++(qsort(lowers(x, y)), .(x, qsort(greaters(x, y))))
     , lowers(x, nil()) -> nil()
     , lowers(x, .(y, z)) ->
       if(&lt;=(y, x), .(y, lowers(x, z)), lowers(x, z))
     , greaters(x, nil()) -> nil()
     , greaters(x, .(y, z)) ->
       if(&lt;=(y, x), greaters(x, z), .(y, greaters(x, z)))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: TIMEOUT

Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..