Problem Secret 05 TRS aprove4

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputSecret 05 TRS aprove4

stdout:

MAYBE

Problem:
 p(0()) -> s(s(0()))
 p(s(x)) -> x
 p(p(s(x))) -> p(x)
 le(p(s(x)),x) -> le(x,x)
 le(0(),y) -> true()
 le(s(x),0()) -> false()
 le(s(x),s(y)) -> le(x,y)
 minus(x,y) -> if(le(x,y),x,y)
 if(true(),x,y) -> 0()
 if(false(),x,y) -> s(minus(p(x),y))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputSecret 05 TRS aprove4

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputSecret 05 TRS aprove4

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  p(0()) -> s(s(0()))
     , p(s(x)) -> x
     , p(p(s(x))) -> p(x)
     , le(p(s(x)), x) -> le(x, x)
     , le(0(), y) -> true()
     , le(s(x), 0()) -> false()
     , le(s(x), s(y)) -> le(x, y)
     , minus(x, y) -> if(le(x, y), x, y)
     , if(true(), x, y) -> 0()
     , if(false(), x, y) -> s(minus(p(x), y))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: p^#(0()) -> c_0()
              , 2: p^#(s(x)) -> c_1()
              , 3: p^#(p(s(x))) -> c_2(p^#(x))
              , 4: le^#(p(s(x)), x) -> c_3(le^#(x, x))
              , 5: le^#(0(), y) -> c_4()
              , 6: le^#(s(x), 0()) -> c_5()
              , 7: le^#(s(x), s(y)) -> c_6(le^#(x, y))
              , 8: minus^#(x, y) -> c_7(if^#(le(x, y), x, y))
              , 9: if^#(true(), x, y) -> c_8()
              , 10: if^#(false(), x, y) -> c_9(minus^#(p(x), y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{8,10}                                                    [         NA         ]
                |
                `->{9}                                                   [         NA         ]
             
             ->{4,7}                                                     [   YES(?,O(n^1))    ]
                |
                |->{5}                                                   [   YES(?,O(n^2))    ]
                |
                `->{6}                                                   [   YES(?,O(n^1))    ]
             
             ->{3}                                                       [   YES(?,O(n^1))    ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |
                `->{2}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [3 3 3]      [0]
                          [3 3 3]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [2 2 0]      [2]
                        [2 0 0]      [2]
                s(x1) = [0 0 0] x1 + [0]
                        [0 1 1]      [0]
                        [0 0 0]      [0]
                p^#(x1) = [0 2 2] x1 + [2]
                          [0 0 0]      [0]
                          [0 2 0]      [4]
                c_2(x1) = [1 0 0] x1 + [5]
                          [0 0 0]      [0]
                          [2 0 0]      [3]
           
           * Path {3}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_0()}
               Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2 5 2] x1 + [0]
                        [0 0 2]      [0]
                        [2 0 0]      [0]
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
                p^#(x1) = [2 3 2] x1 + [0]
                          [2 0 2]      [0]
                          [2 2 2]      [0]
                c_0() = [1]
                        [0]
                        [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
           
           * Path {3}->{2}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(s(x)) -> c_1()}
               Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [1 0 1] x1 + [2]
                        [0 0 0]      [2]
                        [0 0 0]      [2]
                p^#(x1) = [2 0 2] x1 + [0]
                          [0 2 2]      [0]
                          [2 2 2]      [0]
                c_1() = [1]
                        [0]
                        [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [7]
           
           * Path {4,7}: YES(?,O(n^1))
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_6) = {1}, Uargs(minus^#) = {},
                 Uargs(c_7) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                               [3 3 3]      [3 3 3]      [0]
                               [3 3 3]      [3 3 3]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  le^#(p(s(x)), x) -> c_3(le^#(x, x))
                  , le^#(s(x), s(y)) -> c_6(le^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2 1 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [1]
                s(x1) = [1 1 0] x1 + [0]
                        [0 0 4]      [1]
                        [0 0 0]      [0]
                le^#(x1, x2) = [2 1 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [4 0 0]      [4]
                               [1 0 1]      [4 0 4]      [6]
                c_3(x1) = [1 0 0] x1 + [1]
                          [0 0 0]      [3]
                          [0 0 0]      [7]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [3]
                          [0 0 0]      [3]
           
           * Path {4,7}->{5}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_6) = {1}, Uargs(minus^#) = {},
                 Uargs(c_7) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(0(), y) -> c_4()}
               Weak Rules:
                 {  le^#(p(s(x)), x) -> c_3(le^#(x, x))
                  , le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2 3 0] x1 + [4]
                        [3 2 0]      [0]
                        [1 0 0]      [0]
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                le^#(x1, x2) = [2 3 0] x1 + [0 0 0] x2 + [0]
                               [2 2 2]      [0 0 0]      [0]
                               [2 2 0]      [2 0 0]      [0]
                c_3(x1) = [4 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 2]      [7]
                c_4() = [1]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
           
           * Path {4,7}->{6}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_6) = {1}, Uargs(minus^#) = {},
                 Uargs(c_7) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), 0()) -> c_5()}
               Weak Rules:
                 {  le^#(p(s(x)), x) -> c_3(le^#(x, x))
                  , le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [4 1 0]      [2]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 1 0] x1 + [0]
                        [0 1 1]      [2]
                        [0 0 0]      [2]
                le^#(x1, x2) = [0 2 2] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 2]      [2]
                               [0 0 0]      [0 4 0]      [0]
                c_3(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [2]
                          [0 0 0]      [0]
                c_5() = [1]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [3]
                          [0 2 0]      [2]
           
           * Path {8,10}: NA
             ---------------
             
             The usable rules for this path are:
             
               {  p(0()) -> s(s(0()))
                , p(s(x)) -> x
                , p(p(s(x))) -> p(x)
                , le(p(s(x)), x) -> le(x, x)
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8,10}->{9}: NA
             --------------------
             
             The usable rules for this path are:
             
               {  p(0()) -> s(s(0()))
                , p(s(x)) -> x
                , p(p(s(x))) -> p(x)
                , le(p(s(x)), x) -> le(x, x)
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
                 Uargs(c_3) = {}, Uargs(c_6) = {}, Uargs(minus^#) = {1},
                 Uargs(c_7) = {1}, Uargs(if^#) = {1}, Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 1 0]      [1]
                0() = [3]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [1]
                        [0 1 1]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 1 1] x1 + [1 3 0] x2 + [2]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [1]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1() = [0]
                        [0]
                        [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [3 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                if^#(x1, x2, x3) = [3 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: p^#(0()) -> c_0()
              , 2: p^#(s(x)) -> c_1()
              , 3: p^#(p(s(x))) -> c_2(p^#(x))
              , 4: le^#(p(s(x)), x) -> c_3(le^#(x, x))
              , 5: le^#(0(), y) -> c_4()
              , 6: le^#(s(x), 0()) -> c_5()
              , 7: le^#(s(x), s(y)) -> c_6(le^#(x, y))
              , 8: minus^#(x, y) -> c_7(if^#(le(x, y), x, y))
              , 9: if^#(true(), x, y) -> c_8()
              , 10: if^#(false(), x, y) -> c_9(minus^#(p(x), y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{8,10}                                                    [       MAYBE        ]
                |
                `->{9}                                                   [         NA         ]
             
             ->{4,7}                                                     [   YES(?,O(n^1))    ]
                |
                |->{5}                                                   [   YES(?,O(n^1))    ]
                |
                `->{6}                                                   [   YES(?,O(n^1))    ]
             
             ->{3}                                                       [   YES(?,O(n^1))    ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |
                `->{2}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [6 4]      [1]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
                p^#(x1) = [2 2] x1 + [0]
                          [4 0]      [0]
                c_2(x1) = [2 1] x1 + [1]
                          [0 0]      [0]
           
           * Path {3}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_0()}
               Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2 2] x1 + [0]
                        [2 2]      [2]
                0() = [2]
                      [2]
                s(x1) = [1 1] x1 + [0]
                        [0 0]      [0]
                p^#(x1) = [2 2] x1 + [0]
                          [0 2]      [0]
                c_0() = [1]
                        [0]
                c_2(x1) = [1 0] x1 + [2]
                          [0 0]      [2]
           
           * Path {3}->{2}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(s(x)) -> c_1()}
               Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2 1] x1 + [0]
                        [1 0]      [0]
                s(x1) = [1 1] x1 + [0]
                        [0 0]      [2]
                p^#(x1) = [2 5] x1 + [0]
                          [0 0]      [4]
                c_1() = [1]
                        [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 0]      [3]
           
           * Path {4,7}: YES(?,O(n^1))
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_6) = {1}, Uargs(minus^#) = {},
                 Uargs(c_7) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                               [3 3]      [3 3]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  le^#(p(s(x)), x) -> c_3(le^#(x, x))
                  , le^#(s(x), s(y)) -> c_6(le^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2 0] x1 + [2]
                        [0 0]      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [4]
                le^#(x1, x2) = [2 0] x1 + [0 1] x2 + [0]
                               [0 0]      [0 0]      [4]
                c_3(x1) = [1 0] x1 + [1]
                          [0 0]      [3]
                c_6(x1) = [1 0] x1 + [3]
                          [0 0]      [2]
           
           * Path {4,7}->{5}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_6) = {1}, Uargs(minus^#) = {},
                 Uargs(c_7) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(0(), y) -> c_4()}
               Weak Rules:
                 {  le^#(p(s(x)), x) -> c_3(le^#(x, x))
                  , le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2 0] x1 + [4]
                        [1 2]      [0]
                0() = [2]
                      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
                le^#(x1, x2) = [2 4] x1 + [0 0] x2 + [4]
                               [0 0]      [0 1]      [0]
                c_3(x1) = [2 0] x1 + [2]
                          [0 0]      [0]
                c_4() = [1]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {4,7}->{6}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_6) = {1}, Uargs(minus^#) = {},
                 Uargs(c_7) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), 0()) -> c_5()}
               Weak Rules:
                 {  le^#(p(s(x)), x) -> c_3(le^#(x, x))
                  , le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [1 0] x1 + [1]
                        [0 0]      [5]
                0() = [0]
                      [0]
                s(x1) = [1 4] x1 + [3]
                        [0 0]      [0]
                le^#(x1, x2) = [2 0] x1 + [0 0] x2 + [2]
                               [1 1]      [0 0]      [0]
                c_3(x1) = [1 0] x1 + [5]
                          [0 0]      [7]
                c_5() = [1]
                        [1]
                c_6(x1) = [1 0] x1 + [5]
                          [0 0]      [3]
           
           * Path {8,10}: MAYBE
             ------------------
             
             The usable rules for this path are:
             
               {  p(0()) -> s(s(0()))
                , p(s(x)) -> x
                , p(p(s(x))) -> p(x)
                , le(p(s(x)), x) -> le(x, x)
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  minus^#(x, y) -> c_7(if^#(le(x, y), x, y))
                  , if^#(false(), x, y) -> c_9(minus^#(p(x), y))
                  , p(0()) -> s(s(0()))
                  , p(s(x)) -> x
                  , p(p(s(x))) -> p(x)
                  , le(p(s(x)), x) -> le(x, x)
                  , le(0(), y) -> true()
                  , le(s(x), 0()) -> false()
                  , le(s(x), s(y)) -> le(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {8,10}->{9}: NA
             --------------------
             
             The usable rules for this path are:
             
               {  p(0()) -> s(s(0()))
                , p(s(x)) -> x
                , p(p(s(x))) -> p(x)
                , le(p(s(x)), x) -> le(x, x)
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
                 Uargs(c_3) = {}, Uargs(c_6) = {}, Uargs(minus^#) = {1},
                 Uargs(c_7) = {1}, Uargs(if^#) = {1}, Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [1 1] x1 + [3]
                        [0 1]      [1]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [1]
                        [0 1]      [0]
                le(x1, x2) = [2 0] x1 + [0 0] x2 + [1]
                             [0 0]      [0 0]      [3]
                true() = [0]
                         [1]
                false() = [0]
                          [1]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_7(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                if^#(x1, x2, x3) = [3 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: p^#(0()) -> c_0()
              , 2: p^#(s(x)) -> c_1()
              , 3: p^#(p(s(x))) -> c_2(p^#(x))
              , 4: le^#(p(s(x)), x) -> c_3(le^#(x, x))
              , 5: le^#(0(), y) -> c_4()
              , 6: le^#(s(x), 0()) -> c_5()
              , 7: le^#(s(x), s(y)) -> c_6(le^#(x, y))
              , 8: minus^#(x, y) -> c_7(if^#(le(x, y), x, y))
              , 9: if^#(true(), x, y) -> c_8()
              , 10: if^#(false(), x, y) -> c_9(minus^#(p(x), y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{8,10}                                                    [       MAYBE        ]
                |
                `->{9}                                                   [         NA         ]
             
             ->{4,7}                                                     [   YES(?,O(n^1))    ]
                |
                |->{5}                                                   [   YES(?,O(n^1))    ]
                |
                `->{6}                                                   [   YES(?,O(n^1))    ]
             
             ->{3}                                                       [   YES(?,O(n^1))    ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |
                `->{2}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2] x1 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [3] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2] x1 + [2]
                s(x1) = [1] x1 + [0]
                p^#(x1) = [2] x1 + [0]
                c_2(x1) = [2] x1 + [3]
           
           * Path {3}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_0()}
               Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2] x1 + [2]
                0() = [2]
                s(x1) = [1] x1 + [0]
                p^#(x1) = [2] x1 + [4]
                c_0() = [1]
                c_2(x1) = [2] x1 + [0]
           
           * Path {3}->{2}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [1] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(s(x)) -> c_1()}
               Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2] x1 + [2]
                s(x1) = [1] x1 + [2]
                p^#(x1) = [2] x1 + [0]
                c_1() = [1]
                c_2(x1) = [2] x1 + [7]
           
           * Path {4,7}: YES(?,O(n^1))
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_6) = {1}, Uargs(minus^#) = {},
                 Uargs(c_7) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [1] x2 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  le^#(p(s(x)), x) -> c_3(le^#(x, x))
                  , le^#(s(x), s(y)) -> c_6(le^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2] x1 + [0]
                s(x1) = [1] x1 + [1]
                le^#(x1, x2) = [2] x1 + [4] x2 + [2]
                c_3(x1) = [1] x1 + [1]
                c_6(x1) = [1] x1 + [5]
           
           * Path {4,7}->{5}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_6) = {1}, Uargs(minus^#) = {},
                 Uargs(c_7) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(0(), y) -> c_4()}
               Weak Rules:
                 {  le^#(p(s(x)), x) -> c_3(le^#(x, x))
                  , le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [6] x1 + [4]
                0() = [2]
                s(x1) = [1] x1 + [0]
                le^#(x1, x2) = [2] x1 + [1] x2 + [0]
                c_3(x1) = [2] x1 + [7]
                c_4() = [1]
                c_6(x1) = [1] x1 + [0]
           
           * Path {4,7}->{6}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_6) = {1}, Uargs(minus^#) = {},
                 Uargs(c_7) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), 0()) -> c_5()}
               Weak Rules:
                 {  le^#(p(s(x)), x) -> c_3(le^#(x, x))
                  , le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2] x1 + [0]
                0() = [2]
                s(x1) = [1] x1 + [2]
                le^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_3(x1) = [1] x1 + [7]
                c_5() = [1]
                c_6(x1) = [1] x1 + [7]
           
           * Path {8,10}: MAYBE
             ------------------
             
             The usable rules for this path are:
             
               {  p(0()) -> s(s(0()))
                , p(s(x)) -> x
                , p(p(s(x))) -> p(x)
                , le(p(s(x)), x) -> le(x, x)
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  minus^#(x, y) -> c_7(if^#(le(x, y), x, y))
                  , if^#(false(), x, y) -> c_9(minus^#(p(x), y))
                  , p(0()) -> s(s(0()))
                  , p(s(x)) -> x
                  , p(p(s(x))) -> p(x)
                  , le(p(s(x)), x) -> le(x, x)
                  , le(0(), y) -> true()
                  , le(s(x), 0()) -> false()
                  , le(s(x), s(y)) -> le(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {8,10}->{9}: NA
             --------------------
             
             The usable rules for this path are:
             
               {  p(0()) -> s(s(0()))
                , p(s(x)) -> x
                , p(p(s(x))) -> p(x)
                , le(p(s(x)), x) -> le(x, x)
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
                 Uargs(c_3) = {}, Uargs(c_6) = {}, Uargs(minus^#) = {1},
                 Uargs(c_7) = {1}, Uargs(if^#) = {1}, Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [1] x1 + [3]
                0() = [0]
                s(x1) = [1] x1 + [1]
                le(x1, x2) = [1] x1 + [0] x2 + [1]
                true() = [0]
                false() = [1]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_7(x1) = [1] x1 + [0]
                if^#(x1, x2, x3) = [3] x1 + [0] x2 + [0] x3 + [0]
                c_8() = [0]
                c_9(x1) = [1] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputSecret 05 TRS aprove4

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputSecret 05 TRS aprove4

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  p(0()) -> s(s(0()))
     , p(s(x)) -> x
     , p(p(s(x))) -> p(x)
     , le(p(s(x)), x) -> le(x, x)
     , le(0(), y) -> true()
     , le(s(x), 0()) -> false()
     , le(s(x), s(y)) -> le(x, y)
     , minus(x, y) -> if(le(x, y), x, y)
     , if(true(), x, y) -> 0()
     , if(false(), x, y) -> s(minus(p(x), y))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: p^#(0()) -> c_0()
              , 2: p^#(s(x)) -> c_1(x)
              , 3: p^#(p(s(x))) -> c_2(p^#(x))
              , 4: le^#(p(s(x)), x) -> c_3(le^#(x, x))
              , 5: le^#(0(), y) -> c_4()
              , 6: le^#(s(x), 0()) -> c_5()
              , 7: le^#(s(x), s(y)) -> c_6(le^#(x, y))
              , 8: minus^#(x, y) -> c_7(if^#(le(x, y), x, y))
              , 9: if^#(true(), x, y) -> c_8()
              , 10: if^#(false(), x, y) -> c_9(minus^#(p(x), y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{8,10}                                                    [         NA         ]
                |
                `->{9}                                                   [         NA         ]
             
             ->{4,7}                                                     [   YES(?,O(n^1))    ]
                |
                |->{5}                                                   [   YES(?,O(n^2))    ]
                |
                `->{6}                                                   [   YES(?,O(n^1))    ]
             
             ->{3}                                                       [   YES(?,O(n^1))    ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |
                `->{2}                                                   [   YES(?,O(n^3))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [3 3 3]      [0]
                          [3 3 3]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [2 2 0]      [2]
                        [2 0 0]      [2]
                s(x1) = [0 0 0] x1 + [0]
                        [0 1 1]      [0]
                        [0 0 0]      [0]
                p^#(x1) = [0 2 2] x1 + [2]
                          [0 0 0]      [0]
                          [0 2 0]      [4]
                c_2(x1) = [1 0 0] x1 + [5]
                          [0 0 0]      [0]
                          [2 0 0]      [3]
           
           * Path {3}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_0()}
               Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2 5 2] x1 + [0]
                        [0 0 2]      [0]
                        [2 0 0]      [0]
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 1]      [0]
                p^#(x1) = [2 3 2] x1 + [0]
                          [2 0 2]      [0]
                          [2 2 2]      [0]
                c_0() = [1]
                        [0]
                        [0]
                c_2(x1) = [3 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
           
           * Path {3}->{2}: YES(?,O(n^3))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 1 1] x1 + [0]
                        [0 1 3]      [0]
                        [0 0 1]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [3 1 3] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(x)) -> c_1(x)}
               Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_1) = {},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [2]
                        [2 0 0]      [0]
                        [0 0 0]      [0]
                s(x1) = [1 2 2] x1 + [2]
                        [0 0 2]      [2]
                        [0 0 0]      [2]
                p^#(x1) = [2 2 2] x1 + [0]
                          [2 2 2]      [2]
                          [2 2 2]      [0]
                c_1(x1) = [0 0 0] x1 + [1]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [2 0 0] x1 + [7]
                          [0 2 0]      [6]
                          [0 0 0]      [4]
           
           * Path {4,7}: YES(?,O(n^1))
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(le^#) = {}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                               [3 3 3]      [3 3 3]      [0]
                               [3 3 3]      [3 3 3]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  le^#(p(s(x)), x) -> c_3(le^#(x, x))
                  , le^#(s(x), s(y)) -> c_6(le^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2 1 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [1]
                s(x1) = [1 1 0] x1 + [0]
                        [0 0 4]      [1]
                        [0 0 0]      [0]
                le^#(x1, x2) = [2 1 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [4 0 0]      [4]
                               [1 0 1]      [4 0 4]      [6]
                c_3(x1) = [1 0 0] x1 + [1]
                          [0 0 0]      [3]
                          [0 0 0]      [7]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [3]
                          [0 0 0]      [3]
           
           * Path {4,7}->{5}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(le^#) = {}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(0(), y) -> c_4()}
               Weak Rules:
                 {  le^#(p(s(x)), x) -> c_3(le^#(x, x))
                  , le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2 3 0] x1 + [4]
                        [3 2 0]      [0]
                        [1 0 0]      [0]
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                le^#(x1, x2) = [2 3 0] x1 + [0 0 0] x2 + [0]
                               [2 2 2]      [0 0 0]      [0]
                               [2 2 0]      [2 0 0]      [0]
                c_3(x1) = [4 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 2]      [7]
                c_4() = [1]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
           
           * Path {4,7}->{6}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(le^#) = {}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), 0()) -> c_5()}
               Weak Rules:
                 {  le^#(p(s(x)), x) -> c_3(le^#(x, x))
                  , le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0 0] x1 + [0]
                        [4 1 0]      [2]
                        [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 1 0] x1 + [0]
                        [0 1 1]      [2]
                        [0 0 0]      [2]
                le^#(x1, x2) = [0 2 2] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 2]      [2]
                               [0 0 0]      [0 4 0]      [0]
                c_3(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [2]
                          [0 0 0]      [0]
                c_5() = [1]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [3]
                          [0 2 0]      [2]
           
           * Path {8,10}: NA
             ---------------
             
             The usable rules for this path are:
             
               {  p(0()) -> s(s(0()))
                , p(s(x)) -> x
                , p(p(s(x))) -> p(x)
                , le(p(s(x)), x) -> le(x, x)
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8,10}->{9}: NA
             --------------------
             
             The usable rules for this path are:
             
               {  p(0()) -> s(s(0()))
                , p(s(x)) -> x
                , p(p(s(x))) -> p(x)
                , le(p(s(x)), x) -> le(x, x)
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {1}, Uargs(s) = {}, Uargs(le) = {1}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {1}, Uargs(c_7) = {1}, Uargs(if^#) = {1, 2},
                 Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [1 0 0] x1 + [1]
                        [0 1 0]      [2]
                        [0 2 1]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 1 2]      [1]
                        [0 0 0]      [0]
                le(x1, x2) = [2 0 0] x1 + [2 1 0] x2 + [2]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [1]
                         [0]
                         [0]
                false() = [1]
                          [0]
                          [0]
                minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                minus^#(x1, x2) = [3 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_7(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                if^#(x1, x2, x3) = [3 0 0] x1 + [3 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: p^#(0()) -> c_0()
              , 2: p^#(s(x)) -> c_1(x)
              , 3: p^#(p(s(x))) -> c_2(p^#(x))
              , 4: le^#(p(s(x)), x) -> c_3(le^#(x, x))
              , 5: le^#(0(), y) -> c_4()
              , 6: le^#(s(x), 0()) -> c_5()
              , 7: le^#(s(x), s(y)) -> c_6(le^#(x, y))
              , 8: minus^#(x, y) -> c_7(if^#(le(x, y), x, y))
              , 9: if^#(true(), x, y) -> c_8()
              , 10: if^#(false(), x, y) -> c_9(minus^#(p(x), y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{8,10}                                                    [       MAYBE        ]
                |
                `->{9}                                                   [         NA         ]
             
             ->{4,7}                                                     [   YES(?,O(n^1))    ]
                |
                |->{5}                                                   [   YES(?,O(n^1))    ]
                |
                `->{6}                                                   [   YES(?,O(n^1))    ]
             
             ->{3}                                                       [   YES(?,O(n^1))    ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |
                `->{2}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [6 4]      [1]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
                p^#(x1) = [2 2] x1 + [0]
                          [4 0]      [0]
                c_2(x1) = [2 1] x1 + [1]
                          [0 0]      [0]
           
           * Path {3}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_0()}
               Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2 2] x1 + [0]
                        [2 2]      [2]
                0() = [2]
                      [2]
                s(x1) = [1 1] x1 + [0]
                        [0 0]      [0]
                p^#(x1) = [2 2] x1 + [0]
                          [0 2]      [0]
                c_0() = [1]
                        [0]
                c_2(x1) = [1 0] x1 + [2]
                          [0 0]      [2]
           
           * Path {3}->{2}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 3] x1 + [0]
                        [0 1]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [1 3] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(x)) -> c_1(x)}
               Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_1) = {},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [1 0]      [0]
                s(x1) = [1 2] x1 + [2]
                        [0 0]      [2]
                p^#(x1) = [2 3] x1 + [0]
                          [2 2]      [0]
                c_1(x1) = [0 0] x1 + [1]
                          [0 0]      [0]
                c_2(x1) = [1 0] x1 + [3]
                          [0 0]      [3]
           
           * Path {4,7}: YES(?,O(n^1))
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(le^#) = {}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                               [3 3]      [3 3]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  le^#(p(s(x)), x) -> c_3(le^#(x, x))
                  , le^#(s(x), s(y)) -> c_6(le^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2 0] x1 + [2]
                        [0 0]      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [4]
                le^#(x1, x2) = [2 0] x1 + [0 1] x2 + [0]
                               [0 0]      [0 0]      [4]
                c_3(x1) = [1 0] x1 + [1]
                          [0 0]      [3]
                c_6(x1) = [1 0] x1 + [3]
                          [0 0]      [2]
           
           * Path {4,7}->{5}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(le^#) = {}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(0(), y) -> c_4()}
               Weak Rules:
                 {  le^#(p(s(x)), x) -> c_3(le^#(x, x))
                  , le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2 0] x1 + [4]
                        [1 2]      [0]
                0() = [2]
                      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
                le^#(x1, x2) = [2 4] x1 + [0 0] x2 + [4]
                               [0 0]      [0 1]      [0]
                c_3(x1) = [2 0] x1 + [2]
                          [0 0]      [0]
                c_4() = [1]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {4,7}->{6}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(le^#) = {}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), 0()) -> c_5()}
               Weak Rules:
                 {  le^#(p(s(x)), x) -> c_3(le^#(x, x))
                  , le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [1 0] x1 + [1]
                        [0 0]      [5]
                0() = [0]
                      [0]
                s(x1) = [1 4] x1 + [3]
                        [0 0]      [0]
                le^#(x1, x2) = [2 0] x1 + [0 0] x2 + [2]
                               [1 1]      [0 0]      [0]
                c_3(x1) = [1 0] x1 + [5]
                          [0 0]      [7]
                c_5() = [1]
                        [1]
                c_6(x1) = [1 0] x1 + [5]
                          [0 0]      [3]
           
           * Path {8,10}: MAYBE
             ------------------
             
             The usable rules for this path are:
             
               {  p(0()) -> s(s(0()))
                , p(s(x)) -> x
                , p(p(s(x))) -> p(x)
                , le(p(s(x)), x) -> le(x, x)
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  minus^#(x, y) -> c_7(if^#(le(x, y), x, y))
                  , if^#(false(), x, y) -> c_9(minus^#(p(x), y))
                  , p(0()) -> s(s(0()))
                  , p(s(x)) -> x
                  , p(p(s(x))) -> p(x)
                  , le(p(s(x)), x) -> le(x, x)
                  , le(0(), y) -> true()
                  , le(s(x), 0()) -> false()
                  , le(s(x), s(y)) -> le(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {8,10}->{9}: NA
             --------------------
             
             The usable rules for this path are:
             
               {  p(0()) -> s(s(0()))
                , p(s(x)) -> x
                , p(p(s(x))) -> p(x)
                , le(p(s(x)), x) -> le(x, x)
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {1}, Uargs(s) = {}, Uargs(le) = {1}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {1}, Uargs(c_7) = {1}, Uargs(if^#) = {1, 2},
                 Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2 3] x1 + [3]
                        [0 1]      [3]
                0() = [3]
                      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 1]      [0]
                le(x1, x2) = [2 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [3]
                true() = [1]
                         [1]
                false() = [1]
                          [1]
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                minus^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_7(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                if^#(x1, x2, x3) = [3 0] x1 + [3 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: p^#(0()) -> c_0()
              , 2: p^#(s(x)) -> c_1(x)
              , 3: p^#(p(s(x))) -> c_2(p^#(x))
              , 4: le^#(p(s(x)), x) -> c_3(le^#(x, x))
              , 5: le^#(0(), y) -> c_4()
              , 6: le^#(s(x), 0()) -> c_5()
              , 7: le^#(s(x), s(y)) -> c_6(le^#(x, y))
              , 8: minus^#(x, y) -> c_7(if^#(le(x, y), x, y))
              , 9: if^#(true(), x, y) -> c_8()
              , 10: if^#(false(), x, y) -> c_9(minus^#(p(x), y))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{8,10}                                                    [       MAYBE        ]
                |
                `->{9}                                                   [         NA         ]
             
             ->{4,7}                                                     [   YES(?,O(n^1))    ]
                |
                |->{5}                                                   [   YES(?,O(n^1))    ]
                |
                `->{6}                                                   [   YES(?,O(n^1))    ]
             
             ->{3}                                                       [   YES(?,O(n^1))    ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |
                `->{2}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2] x1 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [3] x1 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2] x1 + [2]
                s(x1) = [1] x1 + [0]
                p^#(x1) = [2] x1 + [0]
                c_2(x1) = [2] x1 + [3]
           
           * Path {3}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_0()}
               Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2] x1 + [2]
                0() = [2]
                s(x1) = [1] x1 + [0]
                p^#(x1) = [2] x1 + [4]
                c_0() = [1]
                c_2(x1) = [2] x1 + [0]
           
           * Path {3}->{2}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [3] x1 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(x)) -> c_1(x)}
               Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_1) = {},
                 Uargs(c_2) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2] x1 + [2]
                s(x1) = [1] x1 + [0]
                p^#(x1) = [2] x1 + [1]
                c_1(x1) = [0] x1 + [0]
                c_2(x1) = [2] x1 + [3]
           
           * Path {4,7}: YES(?,O(n^1))
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(le^#) = {}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [1] x2 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  le^#(p(s(x)), x) -> c_3(le^#(x, x))
                  , le^#(s(x), s(y)) -> c_6(le^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2] x1 + [0]
                s(x1) = [1] x1 + [1]
                le^#(x1, x2) = [2] x1 + [4] x2 + [2]
                c_3(x1) = [1] x1 + [1]
                c_6(x1) = [1] x1 + [5]
           
           * Path {4,7}->{5}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(le^#) = {}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(0(), y) -> c_4()}
               Weak Rules:
                 {  le^#(p(s(x)), x) -> c_3(le^#(x, x))
                  , le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [6] x1 + [4]
                0() = [2]
                s(x1) = [1] x1 + [0]
                le^#(x1, x2) = [2] x1 + [1] x2 + [0]
                c_3(x1) = [2] x1 + [7]
                c_4() = [1]
                c_6(x1) = [1] x1 + [0]
           
           * Path {4,7}->{6}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(le^#) = {}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
                 Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_7(x1) = [0] x1 + [0]
                if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), 0()) -> c_5()}
               Weak Rules:
                 {  le^#(p(s(x)), x) -> c_3(le^#(x, x))
                  , le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [2] x1 + [0]
                0() = [2]
                s(x1) = [1] x1 + [2]
                le^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_3(x1) = [1] x1 + [7]
                c_5() = [1]
                c_6(x1) = [1] x1 + [7]
           
           * Path {8,10}: MAYBE
             ------------------
             
             The usable rules for this path are:
             
               {  p(0()) -> s(s(0()))
                , p(s(x)) -> x
                , p(p(s(x))) -> p(x)
                , le(p(s(x)), x) -> le(x, x)
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  minus^#(x, y) -> c_7(if^#(le(x, y), x, y))
                  , if^#(false(), x, y) -> c_9(minus^#(p(x), y))
                  , p(0()) -> s(s(0()))
                  , p(s(x)) -> x
                  , p(p(s(x))) -> p(x)
                  , le(p(s(x)), x) -> le(x, x)
                  , le(0(), y) -> true()
                  , le(s(x), 0()) -> false()
                  , le(s(x), s(y)) -> le(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {8,10}->{9}: NA
             --------------------
             
             The usable rules for this path are:
             
               {  p(0()) -> s(s(0()))
                , p(s(x)) -> x
                , p(p(s(x))) -> p(x)
                , le(p(s(x)), x) -> le(x, x)
                , le(0(), y) -> true()
                , le(s(x), 0()) -> false()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(p) = {1}, Uargs(s) = {}, Uargs(le) = {1}, Uargs(minus) = {},
                 Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
                 Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
                 Uargs(minus^#) = {1}, Uargs(c_7) = {1}, Uargs(if^#) = {1, 2},
                 Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                p(x1) = [1] x1 + [3]
                0() = [2]
                s(x1) = [1] x1 + [1]
                le(x1, x2) = [1] x1 + [0] x2 + [2]
                true() = [1]
                false() = [0]
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                p^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                minus^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_7(x1) = [1] x1 + [0]
                if^#(x1, x2, x3) = [3] x1 + [3] x2 + [0] x3 + [0]
                c_8() = [0]
                c_9(x1) = [1] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.