Tool CaT
stdout:
MAYBE
Problem:
p(0()) -> s(s(0()))
p(s(x)) -> x
p(p(s(x))) -> p(x)
le(p(s(x)),x) -> le(x,x)
le(0(),y) -> true()
le(s(x),0()) -> false()
le(s(x),s(y)) -> le(x,y)
minus(x,y) -> if(le(x,y),x,y)
if(true(),x,y) -> 0()
if(false(),x,y) -> s(minus(p(x),y))
Proof:
OpenTool IRC1
stdout:
MAYBE
Tool IRC2
stdout:
MAYBE
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: MAYBE
Input Problem: innermost runtime-complexity with respect to
Rules:
{ p(0()) -> s(s(0()))
, p(s(x)) -> x
, p(p(s(x))) -> p(x)
, le(p(s(x)), x) -> le(x, x)
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)
, minus(x, y) -> if(le(x, y), x, y)
, if(true(), x, y) -> 0()
, if(false(), x, y) -> s(minus(p(x), y))}
Proof Output:
None of the processors succeeded.
Details of failed attempt(s):
-----------------------------
1) 'wdg' failed due to the following reason:
Transformation Details:
-----------------------
We have computed the following set of weak (innermost) dependency pairs:
{ 1: p^#(0()) -> c_0()
, 2: p^#(s(x)) -> c_1()
, 3: p^#(p(s(x))) -> c_2(p^#(x))
, 4: le^#(p(s(x)), x) -> c_3(le^#(x, x))
, 5: le^#(0(), y) -> c_4()
, 6: le^#(s(x), 0()) -> c_5()
, 7: le^#(s(x), s(y)) -> c_6(le^#(x, y))
, 8: minus^#(x, y) -> c_7(if^#(le(x, y), x, y))
, 9: if^#(true(), x, y) -> c_8()
, 10: if^#(false(), x, y) -> c_9(minus^#(p(x), y))}
Following Dependency Graph (modulo SCCs) was computed. (Answers to
subproofs are indicated to the right.)
->{8,10} [ NA ]
|
`->{9} [ NA ]
->{4,7} [ YES(?,O(n^1)) ]
|
|->{5} [ YES(?,O(n^2)) ]
|
`->{6} [ YES(?,O(n^1)) ]
->{3} [ YES(?,O(n^1)) ]
|
|->{1} [ YES(?,O(n^1)) ]
|
`->{2} [ YES(?,O(n^1)) ]
Sub-problems:
-------------
* Path {3}: YES(?,O(n^1))
-----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
0() = [0]
[0]
[0]
s(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
true() = [0]
[0]
[0]
false() = [0]
[0]
[0]
minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
p^#(x1) = [0 0 0] x1 + [0]
[3 3 3] [0]
[3 3 3] [0]
c_0() = [0]
[0]
[0]
c_1() = [0]
[0]
[0]
c_2(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_3(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_4() = [0]
[0]
[0]
c_5() = [0]
[0]
[0]
c_6(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_7(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
c_8() = [0]
[0]
[0]
c_9(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 3'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0 0] x1 + [0]
[2 2 0] [2]
[2 0 0] [2]
s(x1) = [0 0 0] x1 + [0]
[0 1 1] [0]
[0 0 0] [0]
p^#(x1) = [0 2 2] x1 + [2]
[0 0 0] [0]
[0 2 0] [4]
c_2(x1) = [1 0 0] x1 + [5]
[0 0 0] [0]
[2 0 0] [3]
* Path {3}->{1}: YES(?,O(n^1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
0() = [0]
[0]
[0]
s(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
true() = [0]
[0]
[0]
false() = [0]
[0]
[0]
minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
p^#(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_0() = [0]
[0]
[0]
c_1() = [0]
[0]
[0]
c_2(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_3(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_4() = [0]
[0]
[0]
c_5() = [0]
[0]
[0]
c_6(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_7(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
c_8() = [0]
[0]
[0]
c_9(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 3'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {p^#(0()) -> c_0()}
Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2 5 2] x1 + [0]
[0 0 2] [0]
[2 0 0] [0]
0() = [2]
[2]
[2]
s(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
p^#(x1) = [2 3 2] x1 + [0]
[2 0 2] [0]
[2 2 2] [0]
c_0() = [1]
[0]
[0]
c_2(x1) = [3 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
* Path {3}->{2}: YES(?,O(n^1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
0() = [0]
[0]
[0]
s(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
true() = [0]
[0]
[0]
false() = [0]
[0]
[0]
minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
p^#(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_0() = [0]
[0]
[0]
c_1() = [0]
[0]
[0]
c_2(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_3(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_4() = [0]
[0]
[0]
c_5() = [0]
[0]
[0]
c_6(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_7(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
c_8() = [0]
[0]
[0]
c_9(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 3'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {p^#(s(x)) -> c_1()}
Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
s(x1) = [1 0 1] x1 + [2]
[0 0 0] [2]
[0 0 0] [2]
p^#(x1) = [2 0 2] x1 + [0]
[0 2 2] [0]
[2 2 2] [0]
c_1() = [1]
[0]
[0]
c_2(x1) = [1 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [7]
* Path {4,7}: YES(?,O(n^1))
-------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
Uargs(c_3) = {1}, Uargs(c_6) = {1}, Uargs(minus^#) = {},
Uargs(c_7) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
0() = [0]
[0]
[0]
s(x1) = [1 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
true() = [0]
[0]
[0]
false() = [0]
[0]
[0]
minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
p^#(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_0() = [0]
[0]
[0]
c_1() = [0]
[0]
[0]
c_2(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
le^#(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
[3 3 3] [3 3 3] [0]
[3 3 3] [3 3 3] [0]
c_3(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
c_4() = [0]
[0]
[0]
c_5() = [0]
[0]
[0]
c_6(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_7(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
c_8() = [0]
[0]
[0]
c_9(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 3'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules:
{ le^#(p(s(x)), x) -> c_3(le^#(x, x))
, le^#(s(x), s(y)) -> c_6(le^#(x, y))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
Uargs(c_6) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2 1 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [1]
s(x1) = [1 1 0] x1 + [0]
[0 0 4] [1]
[0 0 0] [0]
le^#(x1, x2) = [2 1 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [4 0 0] [4]
[1 0 1] [4 0 4] [6]
c_3(x1) = [1 0 0] x1 + [1]
[0 0 0] [3]
[0 0 0] [7]
c_6(x1) = [1 0 0] x1 + [0]
[0 0 0] [3]
[0 0 0] [3]
* Path {4,7}->{5}: YES(?,O(n^2))
------------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
Uargs(c_3) = {1}, Uargs(c_6) = {1}, Uargs(minus^#) = {},
Uargs(c_7) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
0() = [0]
[0]
[0]
s(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
true() = [0]
[0]
[0]
false() = [0]
[0]
[0]
minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
p^#(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_0() = [0]
[0]
[0]
c_1() = [0]
[0]
[0]
c_2(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_3(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
c_4() = [0]
[0]
[0]
c_5() = [0]
[0]
[0]
c_6(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_7(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
c_8() = [0]
[0]
[0]
c_9(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 3'
--------------------------------------
Answer: YES(?,O(n^2))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {le^#(0(), y) -> c_4()}
Weak Rules:
{ le^#(p(s(x)), x) -> c_3(le^#(x, x))
, le^#(s(x), s(y)) -> c_6(le^#(x, y))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
Uargs(c_6) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2 3 0] x1 + [4]
[3 2 0] [0]
[1 0 0] [0]
0() = [2]
[2]
[2]
s(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 0] [0]
le^#(x1, x2) = [2 3 0] x1 + [0 0 0] x2 + [0]
[2 2 2] [0 0 0] [0]
[2 2 0] [2 0 0] [0]
c_3(x1) = [4 0 0] x1 + [7]
[0 0 0] [7]
[0 0 2] [7]
c_4() = [1]
[0]
[0]
c_6(x1) = [1 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
* Path {4,7}->{6}: YES(?,O(n^1))
------------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
Uargs(c_3) = {1}, Uargs(c_6) = {1}, Uargs(minus^#) = {},
Uargs(c_7) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
0() = [0]
[0]
[0]
s(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
true() = [0]
[0]
[0]
false() = [0]
[0]
[0]
minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
p^#(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_0() = [0]
[0]
[0]
c_1() = [0]
[0]
[0]
c_2(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_3(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
c_4() = [0]
[0]
[0]
c_5() = [0]
[0]
[0]
c_6(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_7(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
c_8() = [0]
[0]
[0]
c_9(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 3'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {le^#(s(x), 0()) -> c_5()}
Weak Rules:
{ le^#(p(s(x)), x) -> c_3(le^#(x, x))
, le^#(s(x), s(y)) -> c_6(le^#(x, y))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
Uargs(c_6) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0 0] x1 + [0]
[4 1 0] [2]
[0 0 0] [0]
0() = [0]
[0]
[0]
s(x1) = [0 1 0] x1 + [0]
[0 1 1] [2]
[0 0 0] [2]
le^#(x1, x2) = [0 2 2] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 2] [2]
[0 0 0] [0 4 0] [0]
c_3(x1) = [1 0 0] x1 + [3]
[0 0 0] [2]
[0 0 0] [0]
c_5() = [1]
[0]
[0]
c_6(x1) = [1 0 0] x1 + [7]
[0 0 0] [3]
[0 2 0] [2]
* Path {8,10}: NA
---------------
The usable rules for this path are:
{ p(0()) -> s(s(0()))
, p(s(x)) -> x
, p(p(s(x))) -> p(x)
, le(p(s(x)), x) -> le(x, x)
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)}
The weight gap principle does not apply:
The input cannot be shown compatible
Complexity induced by the adequate RMI: MAYBE
We have not generated a proof for the resulting sub-problem.
* Path {8,10}->{9}: NA
--------------------
The usable rules for this path are:
{ p(0()) -> s(s(0()))
, p(s(x)) -> x
, p(p(s(x))) -> p(x)
, le(p(s(x)), x) -> le(x, x)
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)}
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
Uargs(c_3) = {}, Uargs(c_6) = {}, Uargs(minus^#) = {1},
Uargs(c_7) = {1}, Uargs(if^#) = {1}, Uargs(c_9) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2 0 0] x1 + [0]
[0 1 0] [0]
[0 1 0] [1]
0() = [3]
[0]
[0]
s(x1) = [1 0 0] x1 + [1]
[0 1 1] [0]
[0 0 0] [0]
le(x1, x2) = [0 1 1] x1 + [1 3 0] x2 + [2]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
true() = [1]
[0]
[0]
false() = [0]
[0]
[0]
minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
p^#(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_0() = [0]
[0]
[0]
c_1() = [0]
[0]
[0]
c_2(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_3(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_4() = [0]
[0]
[0]
c_5() = [0]
[0]
[0]
c_6(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
minus^#(x1, x2) = [3 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_7(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
if^#(x1, x2, x3) = [3 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
c_8() = [0]
[0]
[0]
c_9(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
Complexity induced by the adequate RMI: YES(?,O(n^2))
We have not generated a proof for the resulting sub-problem.
2) 'wdg' failed due to the following reason:
Transformation Details:
-----------------------
We have computed the following set of weak (innermost) dependency pairs:
{ 1: p^#(0()) -> c_0()
, 2: p^#(s(x)) -> c_1()
, 3: p^#(p(s(x))) -> c_2(p^#(x))
, 4: le^#(p(s(x)), x) -> c_3(le^#(x, x))
, 5: le^#(0(), y) -> c_4()
, 6: le^#(s(x), 0()) -> c_5()
, 7: le^#(s(x), s(y)) -> c_6(le^#(x, y))
, 8: minus^#(x, y) -> c_7(if^#(le(x, y), x, y))
, 9: if^#(true(), x, y) -> c_8()
, 10: if^#(false(), x, y) -> c_9(minus^#(p(x), y))}
Following Dependency Graph (modulo SCCs) was computed. (Answers to
subproofs are indicated to the right.)
->{8,10} [ MAYBE ]
|
`->{9} [ NA ]
->{4,7} [ YES(?,O(n^1)) ]
|
|->{5} [ YES(?,O(n^1)) ]
|
`->{6} [ YES(?,O(n^1)) ]
->{3} [ YES(?,O(n^1)) ]
|
|->{1} [ YES(?,O(n^1)) ]
|
`->{2} [ YES(?,O(n^1)) ]
Sub-problems:
-------------
* Path {3}: YES(?,O(n^1))
-----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
false() = [0]
[0]
minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[3 3] [0]
c_0() = [0]
[0]
c_1() = [0]
[0]
c_2(x1) = [1 0] x1 + [0]
[0 1] [0]
le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_3(x1) = [0 0] x1 + [0]
[0 0] [0]
c_4() = [0]
[0]
c_5() = [0]
[0]
c_6(x1) = [0 0] x1 + [0]
[0 0] [0]
minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_7(x1) = [0 0] x1 + [0]
[0 0] [0]
if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
c_8() = [0]
[0]
c_9(x1) = [0 0] x1 + [0]
[0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0] x1 + [0]
[6 4] [1]
s(x1) = [1 0] x1 + [0]
[0 1] [0]
p^#(x1) = [2 2] x1 + [0]
[4 0] [0]
c_2(x1) = [2 1] x1 + [1]
[0 0] [0]
* Path {3}->{1}: YES(?,O(n^1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
false() = [0]
[0]
minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_0() = [0]
[0]
c_1() = [0]
[0]
c_2(x1) = [1 0] x1 + [0]
[0 1] [0]
le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_3(x1) = [0 0] x1 + [0]
[0 0] [0]
c_4() = [0]
[0]
c_5() = [0]
[0]
c_6(x1) = [0 0] x1 + [0]
[0 0] [0]
minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_7(x1) = [0 0] x1 + [0]
[0 0] [0]
if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
c_8() = [0]
[0]
c_9(x1) = [0 0] x1 + [0]
[0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {p^#(0()) -> c_0()}
Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2 2] x1 + [0]
[2 2] [2]
0() = [2]
[2]
s(x1) = [1 1] x1 + [0]
[0 0] [0]
p^#(x1) = [2 2] x1 + [0]
[0 2] [0]
c_0() = [1]
[0]
c_2(x1) = [1 0] x1 + [2]
[0 0] [2]
* Path {3}->{2}: YES(?,O(n^1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
false() = [0]
[0]
minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_0() = [0]
[0]
c_1() = [0]
[0]
c_2(x1) = [1 0] x1 + [0]
[0 1] [0]
le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_3(x1) = [0 0] x1 + [0]
[0 0] [0]
c_4() = [0]
[0]
c_5() = [0]
[0]
c_6(x1) = [0 0] x1 + [0]
[0 0] [0]
minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_7(x1) = [0 0] x1 + [0]
[0 0] [0]
if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
c_8() = [0]
[0]
c_9(x1) = [0 0] x1 + [0]
[0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {p^#(s(x)) -> c_1()}
Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2 1] x1 + [0]
[1 0] [0]
s(x1) = [1 1] x1 + [0]
[0 0] [2]
p^#(x1) = [2 5] x1 + [0]
[0 0] [4]
c_1() = [1]
[0]
c_2(x1) = [1 0] x1 + [0]
[0 0] [3]
* Path {4,7}: YES(?,O(n^1))
-------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
Uargs(c_3) = {1}, Uargs(c_6) = {1}, Uargs(minus^#) = {},
Uargs(c_7) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
s(x1) = [1 0] x1 + [0]
[0 0] [0]
le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
false() = [0]
[0]
minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_0() = [0]
[0]
c_1() = [0]
[0]
c_2(x1) = [0 0] x1 + [0]
[0 0] [0]
le^#(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
[3 3] [3 3] [0]
c_3(x1) = [1 0] x1 + [0]
[0 1] [0]
c_4() = [0]
[0]
c_5() = [0]
[0]
c_6(x1) = [1 0] x1 + [0]
[0 1] [0]
minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_7(x1) = [0 0] x1 + [0]
[0 0] [0]
if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
c_8() = [0]
[0]
c_9(x1) = [0 0] x1 + [0]
[0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules:
{ le^#(p(s(x)), x) -> c_3(le^#(x, x))
, le^#(s(x), s(y)) -> c_6(le^#(x, y))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
Uargs(c_6) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2 0] x1 + [2]
[0 0] [0]
s(x1) = [1 0] x1 + [0]
[0 1] [4]
le^#(x1, x2) = [2 0] x1 + [0 1] x2 + [0]
[0 0] [0 0] [4]
c_3(x1) = [1 0] x1 + [1]
[0 0] [3]
c_6(x1) = [1 0] x1 + [3]
[0 0] [2]
* Path {4,7}->{5}: YES(?,O(n^1))
------------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
Uargs(c_3) = {1}, Uargs(c_6) = {1}, Uargs(minus^#) = {},
Uargs(c_7) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
false() = [0]
[0]
minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_0() = [0]
[0]
c_1() = [0]
[0]
c_2(x1) = [0 0] x1 + [0]
[0 0] [0]
le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_3(x1) = [1 0] x1 + [0]
[0 1] [0]
c_4() = [0]
[0]
c_5() = [0]
[0]
c_6(x1) = [1 0] x1 + [0]
[0 1] [0]
minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_7(x1) = [0 0] x1 + [0]
[0 0] [0]
if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
c_8() = [0]
[0]
c_9(x1) = [0 0] x1 + [0]
[0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {le^#(0(), y) -> c_4()}
Weak Rules:
{ le^#(p(s(x)), x) -> c_3(le^#(x, x))
, le^#(s(x), s(y)) -> c_6(le^#(x, y))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
Uargs(c_6) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2 0] x1 + [4]
[1 2] [0]
0() = [2]
[0]
s(x1) = [1 0] x1 + [0]
[0 1] [0]
le^#(x1, x2) = [2 4] x1 + [0 0] x2 + [4]
[0 0] [0 1] [0]
c_3(x1) = [2 0] x1 + [2]
[0 0] [0]
c_4() = [1]
[0]
c_6(x1) = [1 0] x1 + [0]
[0 0] [0]
* Path {4,7}->{6}: YES(?,O(n^1))
------------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
Uargs(c_3) = {1}, Uargs(c_6) = {1}, Uargs(minus^#) = {},
Uargs(c_7) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
false() = [0]
[0]
minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_0() = [0]
[0]
c_1() = [0]
[0]
c_2(x1) = [0 0] x1 + [0]
[0 0] [0]
le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_3(x1) = [1 0] x1 + [0]
[0 1] [0]
c_4() = [0]
[0]
c_5() = [0]
[0]
c_6(x1) = [1 0] x1 + [0]
[0 1] [0]
minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_7(x1) = [0 0] x1 + [0]
[0 0] [0]
if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
c_8() = [0]
[0]
c_9(x1) = [0 0] x1 + [0]
[0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {le^#(s(x), 0()) -> c_5()}
Weak Rules:
{ le^#(p(s(x)), x) -> c_3(le^#(x, x))
, le^#(s(x), s(y)) -> c_6(le^#(x, y))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
Uargs(c_6) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [1 0] x1 + [1]
[0 0] [5]
0() = [0]
[0]
s(x1) = [1 4] x1 + [3]
[0 0] [0]
le^#(x1, x2) = [2 0] x1 + [0 0] x2 + [2]
[1 1] [0 0] [0]
c_3(x1) = [1 0] x1 + [5]
[0 0] [7]
c_5() = [1]
[1]
c_6(x1) = [1 0] x1 + [5]
[0 0] [3]
* Path {8,10}: MAYBE
------------------
The usable rules for this path are:
{ p(0()) -> s(s(0()))
, p(s(x)) -> x
, p(p(s(x))) -> p(x)
, le(p(s(x)), x) -> le(x, x)
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)}
The weight gap principle does not apply:
The input cannot be shown compatible
Complexity induced by the adequate RMI: MAYBE
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: MAYBE
Input Problem: innermost runtime-complexity with respect to
Rules:
{ minus^#(x, y) -> c_7(if^#(le(x, y), x, y))
, if^#(false(), x, y) -> c_9(minus^#(p(x), y))
, p(0()) -> s(s(0()))
, p(s(x)) -> x
, p(p(s(x))) -> p(x)
, le(p(s(x)), x) -> le(x, x)
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)}
Proof Output:
The input cannot be shown compatible
* Path {8,10}->{9}: NA
--------------------
The usable rules for this path are:
{ p(0()) -> s(s(0()))
, p(s(x)) -> x
, p(p(s(x))) -> p(x)
, le(p(s(x)), x) -> le(x, x)
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)}
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
Uargs(c_3) = {}, Uargs(c_6) = {}, Uargs(minus^#) = {1},
Uargs(c_7) = {1}, Uargs(if^#) = {1}, Uargs(c_9) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [1 1] x1 + [3]
[0 1] [1]
0() = [0]
[0]
s(x1) = [1 0] x1 + [1]
[0 1] [0]
le(x1, x2) = [2 0] x1 + [0 0] x2 + [1]
[0 0] [0 0] [3]
true() = [0]
[1]
false() = [0]
[1]
minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_0() = [0]
[0]
c_1() = [0]
[0]
c_2(x1) = [0 0] x1 + [0]
[0 0] [0]
le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_3(x1) = [0 0] x1 + [0]
[0 0] [0]
c_4() = [0]
[0]
c_5() = [0]
[0]
c_6(x1) = [0 0] x1 + [0]
[0 0] [0]
minus^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_7(x1) = [1 0] x1 + [0]
[0 1] [0]
if^#(x1, x2, x3) = [3 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
c_8() = [0]
[0]
c_9(x1) = [1 0] x1 + [0]
[0 1] [0]
Complexity induced by the adequate RMI: YES(?,O(n^1))
We have not generated a proof for the resulting sub-problem.
3) 'wdg' failed due to the following reason:
Transformation Details:
-----------------------
We have computed the following set of weak (innermost) dependency pairs:
{ 1: p^#(0()) -> c_0()
, 2: p^#(s(x)) -> c_1()
, 3: p^#(p(s(x))) -> c_2(p^#(x))
, 4: le^#(p(s(x)), x) -> c_3(le^#(x, x))
, 5: le^#(0(), y) -> c_4()
, 6: le^#(s(x), 0()) -> c_5()
, 7: le^#(s(x), s(y)) -> c_6(le^#(x, y))
, 8: minus^#(x, y) -> c_7(if^#(le(x, y), x, y))
, 9: if^#(true(), x, y) -> c_8()
, 10: if^#(false(), x, y) -> c_9(minus^#(p(x), y))}
Following Dependency Graph (modulo SCCs) was computed. (Answers to
subproofs are indicated to the right.)
->{8,10} [ MAYBE ]
|
`->{9} [ NA ]
->{4,7} [ YES(?,O(n^1)) ]
|
|->{5} [ YES(?,O(n^1)) ]
|
`->{6} [ YES(?,O(n^1)) ]
->{3} [ YES(?,O(n^1)) ]
|
|->{1} [ YES(?,O(n^1)) ]
|
`->{2} [ YES(?,O(n^1)) ]
Sub-problems:
-------------
* Path {3}: YES(?,O(n^1))
-----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2] x1 + [0]
0() = [0]
s(x1) = [1] x1 + [0]
le(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
false() = [0]
minus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
p^#(x1) = [3] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [1] x1 + [0]
le^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_3(x1) = [0] x1 + [0]
c_4() = [0]
c_5() = [0]
c_6(x1) = [0] x1 + [0]
minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_7(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_8() = [0]
c_9(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2] x1 + [2]
s(x1) = [1] x1 + [0]
p^#(x1) = [2] x1 + [0]
c_2(x1) = [2] x1 + [3]
* Path {3}->{1}: YES(?,O(n^1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0] x1 + [0]
0() = [0]
s(x1) = [0] x1 + [0]
le(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
false() = [0]
minus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
p^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [1] x1 + [0]
le^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_3(x1) = [0] x1 + [0]
c_4() = [0]
c_5() = [0]
c_6(x1) = [0] x1 + [0]
minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_7(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_8() = [0]
c_9(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {p^#(0()) -> c_0()}
Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2] x1 + [2]
0() = [2]
s(x1) = [1] x1 + [0]
p^#(x1) = [2] x1 + [4]
c_0() = [1]
c_2(x1) = [2] x1 + [0]
* Path {3}->{2}: YES(?,O(n^1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0] x1 + [0]
0() = [0]
s(x1) = [0] x1 + [0]
le(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
false() = [0]
minus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
p^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [1] x1 + [0]
le^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_3(x1) = [0] x1 + [0]
c_4() = [0]
c_5() = [0]
c_6(x1) = [0] x1 + [0]
minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_7(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_8() = [0]
c_9(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {p^#(s(x)) -> c_1()}
Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2] x1 + [2]
s(x1) = [1] x1 + [2]
p^#(x1) = [2] x1 + [0]
c_1() = [1]
c_2(x1) = [2] x1 + [7]
* Path {4,7}: YES(?,O(n^1))
-------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
Uargs(c_3) = {1}, Uargs(c_6) = {1}, Uargs(minus^#) = {},
Uargs(c_7) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0] x1 + [0]
0() = [0]
s(x1) = [1] x1 + [0]
le(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
false() = [0]
minus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
p^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
le^#(x1, x2) = [0] x1 + [1] x2 + [0]
c_3(x1) = [1] x1 + [0]
c_4() = [0]
c_5() = [0]
c_6(x1) = [1] x1 + [0]
minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_7(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_8() = [0]
c_9(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules:
{ le^#(p(s(x)), x) -> c_3(le^#(x, x))
, le^#(s(x), s(y)) -> c_6(le^#(x, y))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
Uargs(c_6) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2] x1 + [0]
s(x1) = [1] x1 + [1]
le^#(x1, x2) = [2] x1 + [4] x2 + [2]
c_3(x1) = [1] x1 + [1]
c_6(x1) = [1] x1 + [5]
* Path {4,7}->{5}: YES(?,O(n^1))
------------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
Uargs(c_3) = {1}, Uargs(c_6) = {1}, Uargs(minus^#) = {},
Uargs(c_7) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0] x1 + [0]
0() = [0]
s(x1) = [0] x1 + [0]
le(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
false() = [0]
minus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
p^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
le^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_3(x1) = [1] x1 + [0]
c_4() = [0]
c_5() = [0]
c_6(x1) = [1] x1 + [0]
minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_7(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_8() = [0]
c_9(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {le^#(0(), y) -> c_4()}
Weak Rules:
{ le^#(p(s(x)), x) -> c_3(le^#(x, x))
, le^#(s(x), s(y)) -> c_6(le^#(x, y))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
Uargs(c_6) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [6] x1 + [4]
0() = [2]
s(x1) = [1] x1 + [0]
le^#(x1, x2) = [2] x1 + [1] x2 + [0]
c_3(x1) = [2] x1 + [7]
c_4() = [1]
c_6(x1) = [1] x1 + [0]
* Path {4,7}->{6}: YES(?,O(n^1))
------------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
Uargs(c_3) = {1}, Uargs(c_6) = {1}, Uargs(minus^#) = {},
Uargs(c_7) = {}, Uargs(if^#) = {}, Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0] x1 + [0]
0() = [0]
s(x1) = [0] x1 + [0]
le(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
false() = [0]
minus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
p^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
le^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_3(x1) = [1] x1 + [0]
c_4() = [0]
c_5() = [0]
c_6(x1) = [1] x1 + [0]
minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_7(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_8() = [0]
c_9(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {le^#(s(x), 0()) -> c_5()}
Weak Rules:
{ le^#(p(s(x)), x) -> c_3(le^#(x, x))
, le^#(s(x), s(y)) -> c_6(le^#(x, y))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
Uargs(c_6) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2] x1 + [0]
0() = [2]
s(x1) = [1] x1 + [2]
le^#(x1, x2) = [2] x1 + [2] x2 + [0]
c_3(x1) = [1] x1 + [7]
c_5() = [1]
c_6(x1) = [1] x1 + [7]
* Path {8,10}: MAYBE
------------------
The usable rules for this path are:
{ p(0()) -> s(s(0()))
, p(s(x)) -> x
, p(p(s(x))) -> p(x)
, le(p(s(x)), x) -> le(x, x)
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)}
The weight gap principle does not apply:
The input cannot be shown compatible
Complexity induced by the adequate RMI: MAYBE
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: MAYBE
Input Problem: innermost runtime-complexity with respect to
Rules:
{ minus^#(x, y) -> c_7(if^#(le(x, y), x, y))
, if^#(false(), x, y) -> c_9(minus^#(p(x), y))
, p(0()) -> s(s(0()))
, p(s(x)) -> x
, p(p(s(x))) -> p(x)
, le(p(s(x)), x) -> le(x, x)
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)}
Proof Output:
The input cannot be shown compatible
* Path {8,10}->{9}: NA
--------------------
The usable rules for this path are:
{ p(0()) -> s(s(0()))
, p(s(x)) -> x
, p(p(s(x))) -> p(x)
, le(p(s(x)), x) -> le(x, x)
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)}
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_2) = {}, Uargs(le^#) = {},
Uargs(c_3) = {}, Uargs(c_6) = {}, Uargs(minus^#) = {1},
Uargs(c_7) = {1}, Uargs(if^#) = {1}, Uargs(c_9) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [1] x1 + [3]
0() = [0]
s(x1) = [1] x1 + [1]
le(x1, x2) = [1] x1 + [0] x2 + [1]
true() = [0]
false() = [1]
minus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
p^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1() = [0]
c_2(x1) = [0] x1 + [0]
le^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_3(x1) = [0] x1 + [0]
c_4() = [0]
c_5() = [0]
c_6(x1) = [0] x1 + [0]
minus^#(x1, x2) = [3] x1 + [0] x2 + [0]
c_7(x1) = [1] x1 + [0]
if^#(x1, x2, x3) = [3] x1 + [0] x2 + [0] x3 + [0]
c_8() = [0]
c_9(x1) = [1] x1 + [0]
Complexity induced by the adequate RMI: YES(?,O(n^1))
We have not generated a proof for the resulting sub-problem.
4) 'matrix-interpretation of dimension 1' failed due to the following reason:
The input cannot be shown compatible
5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
match-boundness of the problem could not be verified.
6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
match-boundness of the problem could not be verified.
Tool RC1
stdout:
MAYBE
Tool RC2
stdout:
MAYBE
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: MAYBE
Input Problem: runtime-complexity with respect to
Rules:
{ p(0()) -> s(s(0()))
, p(s(x)) -> x
, p(p(s(x))) -> p(x)
, le(p(s(x)), x) -> le(x, x)
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)
, minus(x, y) -> if(le(x, y), x, y)
, if(true(), x, y) -> 0()
, if(false(), x, y) -> s(minus(p(x), y))}
Proof Output:
None of the processors succeeded.
Details of failed attempt(s):
-----------------------------
1) 'wdg' failed due to the following reason:
Transformation Details:
-----------------------
We have computed the following set of weak (innermost) dependency pairs:
{ 1: p^#(0()) -> c_0()
, 2: p^#(s(x)) -> c_1(x)
, 3: p^#(p(s(x))) -> c_2(p^#(x))
, 4: le^#(p(s(x)), x) -> c_3(le^#(x, x))
, 5: le^#(0(), y) -> c_4()
, 6: le^#(s(x), 0()) -> c_5()
, 7: le^#(s(x), s(y)) -> c_6(le^#(x, y))
, 8: minus^#(x, y) -> c_7(if^#(le(x, y), x, y))
, 9: if^#(true(), x, y) -> c_8()
, 10: if^#(false(), x, y) -> c_9(minus^#(p(x), y))}
Following Dependency Graph (modulo SCCs) was computed. (Answers to
subproofs are indicated to the right.)
->{8,10} [ NA ]
|
`->{9} [ NA ]
->{4,7} [ YES(?,O(n^1)) ]
|
|->{5} [ YES(?,O(n^2)) ]
|
`->{6} [ YES(?,O(n^1)) ]
->{3} [ YES(?,O(n^1)) ]
|
|->{1} [ YES(?,O(n^1)) ]
|
`->{2} [ YES(?,O(n^3)) ]
Sub-problems:
-------------
* Path {3}: YES(?,O(n^1))
-----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
0() = [0]
[0]
[0]
s(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
true() = [0]
[0]
[0]
false() = [0]
[0]
[0]
minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
p^#(x1) = [0 0 0] x1 + [0]
[3 3 3] [0]
[3 3 3] [0]
c_0() = [0]
[0]
[0]
c_1(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_2(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_3(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_4() = [0]
[0]
[0]
c_5() = [0]
[0]
[0]
c_6(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_7(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
c_8() = [0]
[0]
[0]
c_9(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 3'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0 0] x1 + [0]
[2 2 0] [2]
[2 0 0] [2]
s(x1) = [0 0 0] x1 + [0]
[0 1 1] [0]
[0 0 0] [0]
p^#(x1) = [0 2 2] x1 + [2]
[0 0 0] [0]
[0 2 0] [4]
c_2(x1) = [1 0 0] x1 + [5]
[0 0 0] [0]
[2 0 0] [3]
* Path {3}->{1}: YES(?,O(n^1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
0() = [0]
[0]
[0]
s(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
true() = [0]
[0]
[0]
false() = [0]
[0]
[0]
minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
p^#(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_0() = [0]
[0]
[0]
c_1(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_2(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_3(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_4() = [0]
[0]
[0]
c_5() = [0]
[0]
[0]
c_6(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_7(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
c_8() = [0]
[0]
[0]
c_9(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 3'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {p^#(0()) -> c_0()}
Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2 5 2] x1 + [0]
[0 0 2] [0]
[2 0 0] [0]
0() = [2]
[2]
[2]
s(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
p^#(x1) = [2 3 2] x1 + [0]
[2 0 2] [0]
[2 2 2] [0]
c_0() = [1]
[0]
[0]
c_2(x1) = [3 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
* Path {3}->{2}: YES(?,O(n^3))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
0() = [0]
[0]
[0]
s(x1) = [1 1 1] x1 + [0]
[0 1 3] [0]
[0 0 1] [0]
le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
true() = [0]
[0]
[0]
false() = [0]
[0]
[0]
minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
p^#(x1) = [3 1 3] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_0() = [0]
[0]
[0]
c_1(x1) = [1 0 1] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_2(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_3(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_4() = [0]
[0]
[0]
c_5() = [0]
[0]
[0]
c_6(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_7(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
c_8() = [0]
[0]
[0]
c_9(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 3'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {p^#(s(x)) -> c_1(x)}
Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_1) = {},
Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0 0] x1 + [2]
[2 0 0] [0]
[0 0 0] [0]
s(x1) = [1 2 2] x1 + [2]
[0 0 2] [2]
[0 0 0] [2]
p^#(x1) = [2 2 2] x1 + [0]
[2 2 2] [2]
[2 2 2] [0]
c_1(x1) = [0 0 0] x1 + [1]
[0 0 0] [0]
[0 0 0] [0]
c_2(x1) = [2 0 0] x1 + [7]
[0 2 0] [6]
[0 0 0] [4]
* Path {4,7}: YES(?,O(n^1))
-------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
Uargs(le^#) = {}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
0() = [0]
[0]
[0]
s(x1) = [1 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
true() = [0]
[0]
[0]
false() = [0]
[0]
[0]
minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
p^#(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_0() = [0]
[0]
[0]
c_1(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_2(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
le^#(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
[3 3 3] [3 3 3] [0]
[3 3 3] [3 3 3] [0]
c_3(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
c_4() = [0]
[0]
[0]
c_5() = [0]
[0]
[0]
c_6(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_7(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
c_8() = [0]
[0]
[0]
c_9(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 3'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules:
{ le^#(p(s(x)), x) -> c_3(le^#(x, x))
, le^#(s(x), s(y)) -> c_6(le^#(x, y))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
Uargs(c_6) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2 1 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [1]
s(x1) = [1 1 0] x1 + [0]
[0 0 4] [1]
[0 0 0] [0]
le^#(x1, x2) = [2 1 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [4 0 0] [4]
[1 0 1] [4 0 4] [6]
c_3(x1) = [1 0 0] x1 + [1]
[0 0 0] [3]
[0 0 0] [7]
c_6(x1) = [1 0 0] x1 + [0]
[0 0 0] [3]
[0 0 0] [3]
* Path {4,7}->{5}: YES(?,O(n^2))
------------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
Uargs(le^#) = {}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
0() = [0]
[0]
[0]
s(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
true() = [0]
[0]
[0]
false() = [0]
[0]
[0]
minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
p^#(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_0() = [0]
[0]
[0]
c_1(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_2(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_3(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
c_4() = [0]
[0]
[0]
c_5() = [0]
[0]
[0]
c_6(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_7(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
c_8() = [0]
[0]
[0]
c_9(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 3'
--------------------------------------
Answer: YES(?,O(n^2))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {le^#(0(), y) -> c_4()}
Weak Rules:
{ le^#(p(s(x)), x) -> c_3(le^#(x, x))
, le^#(s(x), s(y)) -> c_6(le^#(x, y))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
Uargs(c_6) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2 3 0] x1 + [4]
[3 2 0] [0]
[1 0 0] [0]
0() = [2]
[2]
[2]
s(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 0] [0]
le^#(x1, x2) = [2 3 0] x1 + [0 0 0] x2 + [0]
[2 2 2] [0 0 0] [0]
[2 2 0] [2 0 0] [0]
c_3(x1) = [4 0 0] x1 + [7]
[0 0 0] [7]
[0 0 2] [7]
c_4() = [1]
[0]
[0]
c_6(x1) = [1 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
* Path {4,7}->{6}: YES(?,O(n^1))
------------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
Uargs(le^#) = {}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
0() = [0]
[0]
[0]
s(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
true() = [0]
[0]
[0]
false() = [0]
[0]
[0]
minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
p^#(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_0() = [0]
[0]
[0]
c_1(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_2(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_3(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
c_4() = [0]
[0]
[0]
c_5() = [0]
[0]
[0]
c_6(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
minus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_7(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
if^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
c_8() = [0]
[0]
[0]
c_9(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 3'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {le^#(s(x), 0()) -> c_5()}
Weak Rules:
{ le^#(p(s(x)), x) -> c_3(le^#(x, x))
, le^#(s(x), s(y)) -> c_6(le^#(x, y))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
Uargs(c_6) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0 0] x1 + [0]
[4 1 0] [2]
[0 0 0] [0]
0() = [0]
[0]
[0]
s(x1) = [0 1 0] x1 + [0]
[0 1 1] [2]
[0 0 0] [2]
le^#(x1, x2) = [0 2 2] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 2] [2]
[0 0 0] [0 4 0] [0]
c_3(x1) = [1 0 0] x1 + [3]
[0 0 0] [2]
[0 0 0] [0]
c_5() = [1]
[0]
[0]
c_6(x1) = [1 0 0] x1 + [7]
[0 0 0] [3]
[0 2 0] [2]
* Path {8,10}: NA
---------------
The usable rules for this path are:
{ p(0()) -> s(s(0()))
, p(s(x)) -> x
, p(p(s(x))) -> p(x)
, le(p(s(x)), x) -> le(x, x)
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)}
The weight gap principle does not apply:
The input cannot be shown compatible
Complexity induced by the adequate RMI: MAYBE
We have not generated a proof for the resulting sub-problem.
* Path {8,10}->{9}: NA
--------------------
The usable rules for this path are:
{ p(0()) -> s(s(0()))
, p(s(x)) -> x
, p(p(s(x))) -> p(x)
, le(p(s(x)), x) -> le(x, x)
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)}
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {1}, Uargs(s) = {}, Uargs(le) = {1}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {1}, Uargs(c_7) = {1}, Uargs(if^#) = {1, 2},
Uargs(c_9) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [1 0 0] x1 + [1]
[0 1 0] [2]
[0 2 1] [0]
0() = [0]
[0]
[0]
s(x1) = [1 0 0] x1 + [0]
[0 1 2] [1]
[0 0 0] [0]
le(x1, x2) = [2 0 0] x1 + [2 1 0] x2 + [2]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
true() = [1]
[0]
[0]
false() = [1]
[0]
[0]
minus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
if(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
p^#(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_0() = [0]
[0]
[0]
c_1(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_2(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_3(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
c_4() = [0]
[0]
[0]
c_5() = [0]
[0]
[0]
c_6(x1) = [0 0 0] x1 + [0]
[0 0 0] [0]
[0 0 0] [0]
minus^#(x1, x2) = [3 0 0] x1 + [0 0 0] x2 + [0]
[0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0]
c_7(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
if^#(x1, x2, x3) = [3 0 0] x1 + [3 0 0] x2 + [0 0 0] x3 + [0]
[0 0 0] [0 0 0] [0 0 0] [0]
[0 0 0] [0 0 0] [0 0 0] [0]
c_8() = [0]
[0]
[0]
c_9(x1) = [1 0 0] x1 + [0]
[0 1 0] [0]
[0 0 1] [0]
Complexity induced by the adequate RMI: YES(?,O(n^2))
We have not generated a proof for the resulting sub-problem.
2) 'wdg' failed due to the following reason:
Transformation Details:
-----------------------
We have computed the following set of weak (innermost) dependency pairs:
{ 1: p^#(0()) -> c_0()
, 2: p^#(s(x)) -> c_1(x)
, 3: p^#(p(s(x))) -> c_2(p^#(x))
, 4: le^#(p(s(x)), x) -> c_3(le^#(x, x))
, 5: le^#(0(), y) -> c_4()
, 6: le^#(s(x), 0()) -> c_5()
, 7: le^#(s(x), s(y)) -> c_6(le^#(x, y))
, 8: minus^#(x, y) -> c_7(if^#(le(x, y), x, y))
, 9: if^#(true(), x, y) -> c_8()
, 10: if^#(false(), x, y) -> c_9(minus^#(p(x), y))}
Following Dependency Graph (modulo SCCs) was computed. (Answers to
subproofs are indicated to the right.)
->{8,10} [ MAYBE ]
|
`->{9} [ NA ]
->{4,7} [ YES(?,O(n^1)) ]
|
|->{5} [ YES(?,O(n^1)) ]
|
`->{6} [ YES(?,O(n^1)) ]
->{3} [ YES(?,O(n^1)) ]
|
|->{1} [ YES(?,O(n^1)) ]
|
`->{2} [ YES(?,O(n^2)) ]
Sub-problems:
-------------
* Path {3}: YES(?,O(n^1))
-----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
false() = [0]
[0]
minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[3 3] [0]
c_0() = [0]
[0]
c_1(x1) = [0 0] x1 + [0]
[0 0] [0]
c_2(x1) = [1 0] x1 + [0]
[0 1] [0]
le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_3(x1) = [0 0] x1 + [0]
[0 0] [0]
c_4() = [0]
[0]
c_5() = [0]
[0]
c_6(x1) = [0 0] x1 + [0]
[0 0] [0]
minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_7(x1) = [0 0] x1 + [0]
[0 0] [0]
if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
c_8() = [0]
[0]
c_9(x1) = [0 0] x1 + [0]
[0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0] x1 + [0]
[6 4] [1]
s(x1) = [1 0] x1 + [0]
[0 1] [0]
p^#(x1) = [2 2] x1 + [0]
[4 0] [0]
c_2(x1) = [2 1] x1 + [1]
[0 0] [0]
* Path {3}->{1}: YES(?,O(n^1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
false() = [0]
[0]
minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_0() = [0]
[0]
c_1(x1) = [0 0] x1 + [0]
[0 0] [0]
c_2(x1) = [1 0] x1 + [0]
[0 1] [0]
le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_3(x1) = [0 0] x1 + [0]
[0 0] [0]
c_4() = [0]
[0]
c_5() = [0]
[0]
c_6(x1) = [0 0] x1 + [0]
[0 0] [0]
minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_7(x1) = [0 0] x1 + [0]
[0 0] [0]
if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
c_8() = [0]
[0]
c_9(x1) = [0 0] x1 + [0]
[0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {p^#(0()) -> c_0()}
Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2 2] x1 + [0]
[2 2] [2]
0() = [2]
[2]
s(x1) = [1 1] x1 + [0]
[0 0] [0]
p^#(x1) = [2 2] x1 + [0]
[0 2] [0]
c_0() = [1]
[0]
c_2(x1) = [1 0] x1 + [2]
[0 0] [2]
* Path {3}->{2}: YES(?,O(n^2))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
s(x1) = [1 3] x1 + [0]
[0 1] [0]
le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
false() = [0]
[0]
minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
p^#(x1) = [1 3] x1 + [0]
[0 0] [0]
c_0() = [0]
[0]
c_1(x1) = [1 0] x1 + [0]
[0 0] [0]
c_2(x1) = [1 0] x1 + [0]
[0 1] [0]
le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_3(x1) = [0 0] x1 + [0]
[0 0] [0]
c_4() = [0]
[0]
c_5() = [0]
[0]
c_6(x1) = [0 0] x1 + [0]
[0 0] [0]
minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_7(x1) = [0 0] x1 + [0]
[0 0] [0]
if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
c_8() = [0]
[0]
c_9(x1) = [0 0] x1 + [0]
[0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {p^#(s(x)) -> c_1(x)}
Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_1) = {},
Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0] x1 + [0]
[1 0] [0]
s(x1) = [1 2] x1 + [2]
[0 0] [2]
p^#(x1) = [2 3] x1 + [0]
[2 2] [0]
c_1(x1) = [0 0] x1 + [1]
[0 0] [0]
c_2(x1) = [1 0] x1 + [3]
[0 0] [3]
* Path {4,7}: YES(?,O(n^1))
-------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
Uargs(le^#) = {}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
s(x1) = [1 0] x1 + [0]
[0 0] [0]
le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
false() = [0]
[0]
minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_0() = [0]
[0]
c_1(x1) = [0 0] x1 + [0]
[0 0] [0]
c_2(x1) = [0 0] x1 + [0]
[0 0] [0]
le^#(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
[3 3] [3 3] [0]
c_3(x1) = [1 0] x1 + [0]
[0 1] [0]
c_4() = [0]
[0]
c_5() = [0]
[0]
c_6(x1) = [1 0] x1 + [0]
[0 1] [0]
minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_7(x1) = [0 0] x1 + [0]
[0 0] [0]
if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
c_8() = [0]
[0]
c_9(x1) = [0 0] x1 + [0]
[0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules:
{ le^#(p(s(x)), x) -> c_3(le^#(x, x))
, le^#(s(x), s(y)) -> c_6(le^#(x, y))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
Uargs(c_6) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2 0] x1 + [2]
[0 0] [0]
s(x1) = [1 0] x1 + [0]
[0 1] [4]
le^#(x1, x2) = [2 0] x1 + [0 1] x2 + [0]
[0 0] [0 0] [4]
c_3(x1) = [1 0] x1 + [1]
[0 0] [3]
c_6(x1) = [1 0] x1 + [3]
[0 0] [2]
* Path {4,7}->{5}: YES(?,O(n^1))
------------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
Uargs(le^#) = {}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
false() = [0]
[0]
minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_0() = [0]
[0]
c_1(x1) = [0 0] x1 + [0]
[0 0] [0]
c_2(x1) = [0 0] x1 + [0]
[0 0] [0]
le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_3(x1) = [1 0] x1 + [0]
[0 1] [0]
c_4() = [0]
[0]
c_5() = [0]
[0]
c_6(x1) = [1 0] x1 + [0]
[0 1] [0]
minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_7(x1) = [0 0] x1 + [0]
[0 0] [0]
if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
c_8() = [0]
[0]
c_9(x1) = [0 0] x1 + [0]
[0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {le^#(0(), y) -> c_4()}
Weak Rules:
{ le^#(p(s(x)), x) -> c_3(le^#(x, x))
, le^#(s(x), s(y)) -> c_6(le^#(x, y))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
Uargs(c_6) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2 0] x1 + [4]
[1 2] [0]
0() = [2]
[0]
s(x1) = [1 0] x1 + [0]
[0 1] [0]
le^#(x1, x2) = [2 4] x1 + [0 0] x2 + [4]
[0 0] [0 1] [0]
c_3(x1) = [2 0] x1 + [2]
[0 0] [0]
c_4() = [1]
[0]
c_6(x1) = [1 0] x1 + [0]
[0 0] [0]
* Path {4,7}->{6}: YES(?,O(n^1))
------------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
Uargs(le^#) = {}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0 0] x1 + [0]
[0 0] [0]
0() = [0]
[0]
s(x1) = [0 0] x1 + [0]
[0 0] [0]
le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
true() = [0]
[0]
false() = [0]
[0]
minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_0() = [0]
[0]
c_1(x1) = [0 0] x1 + [0]
[0 0] [0]
c_2(x1) = [0 0] x1 + [0]
[0 0] [0]
le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_3(x1) = [1 0] x1 + [0]
[0 1] [0]
c_4() = [0]
[0]
c_5() = [0]
[0]
c_6(x1) = [1 0] x1 + [0]
[0 1] [0]
minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_7(x1) = [0 0] x1 + [0]
[0 0] [0]
if^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
c_8() = [0]
[0]
c_9(x1) = [0 0] x1 + [0]
[0 0] [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {le^#(s(x), 0()) -> c_5()}
Weak Rules:
{ le^#(p(s(x)), x) -> c_3(le^#(x, x))
, le^#(s(x), s(y)) -> c_6(le^#(x, y))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
Uargs(c_6) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [1 0] x1 + [1]
[0 0] [5]
0() = [0]
[0]
s(x1) = [1 4] x1 + [3]
[0 0] [0]
le^#(x1, x2) = [2 0] x1 + [0 0] x2 + [2]
[1 1] [0 0] [0]
c_3(x1) = [1 0] x1 + [5]
[0 0] [7]
c_5() = [1]
[1]
c_6(x1) = [1 0] x1 + [5]
[0 0] [3]
* Path {8,10}: MAYBE
------------------
The usable rules for this path are:
{ p(0()) -> s(s(0()))
, p(s(x)) -> x
, p(p(s(x))) -> p(x)
, le(p(s(x)), x) -> le(x, x)
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)}
The weight gap principle does not apply:
The input cannot be shown compatible
Complexity induced by the adequate RMI: MAYBE
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 2'
--------------------------------------
Answer: MAYBE
Input Problem: runtime-complexity with respect to
Rules:
{ minus^#(x, y) -> c_7(if^#(le(x, y), x, y))
, if^#(false(), x, y) -> c_9(minus^#(p(x), y))
, p(0()) -> s(s(0()))
, p(s(x)) -> x
, p(p(s(x))) -> p(x)
, le(p(s(x)), x) -> le(x, x)
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)}
Proof Output:
The input cannot be shown compatible
* Path {8,10}->{9}: NA
--------------------
The usable rules for this path are:
{ p(0()) -> s(s(0()))
, p(s(x)) -> x
, p(p(s(x))) -> p(x)
, le(p(s(x)), x) -> le(x, x)
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)}
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {1}, Uargs(s) = {}, Uargs(le) = {1}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {1}, Uargs(c_7) = {1}, Uargs(if^#) = {1, 2},
Uargs(c_9) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2 3] x1 + [3]
[0 1] [3]
0() = [3]
[0]
s(x1) = [1 0] x1 + [2]
[0 1] [0]
le(x1, x2) = [2 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [3]
true() = [1]
[1]
false() = [1]
[1]
minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
if(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
p^#(x1) = [0 0] x1 + [0]
[0 0] [0]
c_0() = [0]
[0]
c_1(x1) = [0 0] x1 + [0]
[0 0] [0]
c_2(x1) = [0 0] x1 + [0]
[0 0] [0]
le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_3(x1) = [0 0] x1 + [0]
[0 0] [0]
c_4() = [0]
[0]
c_5() = [0]
[0]
c_6(x1) = [0 0] x1 + [0]
[0 0] [0]
minus^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
[0 0] [0 0] [0]
c_7(x1) = [1 0] x1 + [0]
[0 1] [0]
if^#(x1, x2, x3) = [3 0] x1 + [3 0] x2 + [0 0] x3 + [0]
[0 0] [0 0] [0 0] [0]
c_8() = [0]
[0]
c_9(x1) = [1 0] x1 + [0]
[0 1] [0]
Complexity induced by the adequate RMI: YES(?,O(n^1))
We have not generated a proof for the resulting sub-problem.
3) 'wdg' failed due to the following reason:
Transformation Details:
-----------------------
We have computed the following set of weak (innermost) dependency pairs:
{ 1: p^#(0()) -> c_0()
, 2: p^#(s(x)) -> c_1(x)
, 3: p^#(p(s(x))) -> c_2(p^#(x))
, 4: le^#(p(s(x)), x) -> c_3(le^#(x, x))
, 5: le^#(0(), y) -> c_4()
, 6: le^#(s(x), 0()) -> c_5()
, 7: le^#(s(x), s(y)) -> c_6(le^#(x, y))
, 8: minus^#(x, y) -> c_7(if^#(le(x, y), x, y))
, 9: if^#(true(), x, y) -> c_8()
, 10: if^#(false(), x, y) -> c_9(minus^#(p(x), y))}
Following Dependency Graph (modulo SCCs) was computed. (Answers to
subproofs are indicated to the right.)
->{8,10} [ MAYBE ]
|
`->{9} [ NA ]
->{4,7} [ YES(?,O(n^1)) ]
|
|->{5} [ YES(?,O(n^1)) ]
|
`->{6} [ YES(?,O(n^1)) ]
->{3} [ YES(?,O(n^1)) ]
|
|->{1} [ YES(?,O(n^1)) ]
|
`->{2} [ YES(?,O(n^1)) ]
Sub-problems:
-------------
* Path {3}: YES(?,O(n^1))
-----------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2] x1 + [0]
0() = [0]
s(x1) = [1] x1 + [0]
le(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
false() = [0]
minus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
p^#(x1) = [3] x1 + [0]
c_0() = [0]
c_1(x1) = [0] x1 + [0]
c_2(x1) = [1] x1 + [0]
le^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_3(x1) = [0] x1 + [0]
c_4() = [0]
c_5() = [0]
c_6(x1) = [0] x1 + [0]
minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_7(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_8() = [0]
c_9(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2] x1 + [2]
s(x1) = [1] x1 + [0]
p^#(x1) = [2] x1 + [0]
c_2(x1) = [2] x1 + [3]
* Path {3}->{1}: YES(?,O(n^1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0] x1 + [0]
0() = [0]
s(x1) = [0] x1 + [0]
le(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
false() = [0]
minus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
p^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1(x1) = [0] x1 + [0]
c_2(x1) = [1] x1 + [0]
le^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_3(x1) = [0] x1 + [0]
c_4() = [0]
c_5() = [0]
c_6(x1) = [0] x1 + [0]
minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_7(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_8() = [0]
c_9(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {p^#(0()) -> c_0()}
Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2] x1 + [2]
0() = [2]
s(x1) = [1] x1 + [0]
p^#(x1) = [2] x1 + [4]
c_0() = [1]
c_2(x1) = [2] x1 + [0]
* Path {3}->{2}: YES(?,O(n^1))
----------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {1},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0] x1 + [0]
0() = [0]
s(x1) = [1] x1 + [0]
le(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
false() = [0]
minus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
p^#(x1) = [3] x1 + [0]
c_0() = [0]
c_1(x1) = [1] x1 + [0]
c_2(x1) = [1] x1 + [0]
le^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_3(x1) = [0] x1 + [0]
c_4() = [0]
c_5() = [0]
c_6(x1) = [0] x1 + [0]
minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_7(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_8() = [0]
c_9(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {p^#(s(x)) -> c_1(x)}
Weak Rules: {p^#(p(s(x))) -> c_2(p^#(x))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_1) = {},
Uargs(c_2) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2] x1 + [2]
s(x1) = [1] x1 + [0]
p^#(x1) = [2] x1 + [1]
c_1(x1) = [0] x1 + [0]
c_2(x1) = [2] x1 + [3]
* Path {4,7}: YES(?,O(n^1))
-------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
Uargs(le^#) = {}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0] x1 + [0]
0() = [0]
s(x1) = [1] x1 + [0]
le(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
false() = [0]
minus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
p^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1(x1) = [0] x1 + [0]
c_2(x1) = [0] x1 + [0]
le^#(x1, x2) = [0] x1 + [1] x2 + [0]
c_3(x1) = [1] x1 + [0]
c_4() = [0]
c_5() = [0]
c_6(x1) = [1] x1 + [0]
minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_7(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_8() = [0]
c_9(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules:
{ le^#(p(s(x)), x) -> c_3(le^#(x, x))
, le^#(s(x), s(y)) -> c_6(le^#(x, y))}
Weak Rules: {}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
Uargs(c_6) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2] x1 + [0]
s(x1) = [1] x1 + [1]
le^#(x1, x2) = [2] x1 + [4] x2 + [2]
c_3(x1) = [1] x1 + [1]
c_6(x1) = [1] x1 + [5]
* Path {4,7}->{5}: YES(?,O(n^1))
------------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
Uargs(le^#) = {}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0] x1 + [0]
0() = [0]
s(x1) = [0] x1 + [0]
le(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
false() = [0]
minus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
p^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1(x1) = [0] x1 + [0]
c_2(x1) = [0] x1 + [0]
le^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_3(x1) = [1] x1 + [0]
c_4() = [0]
c_5() = [0]
c_6(x1) = [1] x1 + [0]
minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_7(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_8() = [0]
c_9(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {le^#(0(), y) -> c_4()}
Weak Rules:
{ le^#(p(s(x)), x) -> c_3(le^#(x, x))
, le^#(s(x), s(y)) -> c_6(le^#(x, y))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
Uargs(c_6) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [6] x1 + [4]
0() = [2]
s(x1) = [1] x1 + [0]
le^#(x1, x2) = [2] x1 + [1] x2 + [0]
c_3(x1) = [2] x1 + [7]
c_4() = [1]
c_6(x1) = [1] x1 + [0]
* Path {4,7}->{6}: YES(?,O(n^1))
------------------------------
The usable rules of this path are empty.
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le) = {}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
Uargs(le^#) = {}, Uargs(c_3) = {1}, Uargs(c_6) = {1},
Uargs(minus^#) = {}, Uargs(c_7) = {}, Uargs(if^#) = {},
Uargs(c_9) = {}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [0] x1 + [0]
0() = [0]
s(x1) = [0] x1 + [0]
le(x1, x2) = [0] x1 + [0] x2 + [0]
true() = [0]
false() = [0]
minus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
p^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1(x1) = [0] x1 + [0]
c_2(x1) = [0] x1 + [0]
le^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_3(x1) = [1] x1 + [0]
c_4() = [0]
c_5() = [0]
c_6(x1) = [1] x1 + [0]
minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_7(x1) = [0] x1 + [0]
if^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
c_8() = [0]
c_9(x1) = [0] x1 + [0]
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: YES(?,O(n^1))
Input Problem: DP runtime-complexity with respect to
Strict Rules: {le^#(s(x), 0()) -> c_5()}
Weak Rules:
{ le^#(p(s(x)), x) -> c_3(le^#(x, x))
, le^#(s(x), s(y)) -> c_6(le^#(x, y))}
Proof Output:
The following argument positions are usable:
Uargs(p) = {}, Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_3) = {1},
Uargs(c_6) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [2] x1 + [0]
0() = [2]
s(x1) = [1] x1 + [2]
le^#(x1, x2) = [2] x1 + [2] x2 + [0]
c_3(x1) = [1] x1 + [7]
c_5() = [1]
c_6(x1) = [1] x1 + [7]
* Path {8,10}: MAYBE
------------------
The usable rules for this path are:
{ p(0()) -> s(s(0()))
, p(s(x)) -> x
, p(p(s(x))) -> p(x)
, le(p(s(x)), x) -> le(x, x)
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)}
The weight gap principle does not apply:
The input cannot be shown compatible
Complexity induced by the adequate RMI: MAYBE
We apply the sub-processor on the resulting sub-problem:
'matrix-interpretation of dimension 1'
--------------------------------------
Answer: MAYBE
Input Problem: runtime-complexity with respect to
Rules:
{ minus^#(x, y) -> c_7(if^#(le(x, y), x, y))
, if^#(false(), x, y) -> c_9(minus^#(p(x), y))
, p(0()) -> s(s(0()))
, p(s(x)) -> x
, p(p(s(x))) -> p(x)
, le(p(s(x)), x) -> le(x, x)
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)}
Proof Output:
The input cannot be shown compatible
* Path {8,10}->{9}: NA
--------------------
The usable rules for this path are:
{ p(0()) -> s(s(0()))
, p(s(x)) -> x
, p(p(s(x))) -> p(x)
, le(p(s(x)), x) -> le(x, x)
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)}
The weightgap principle applies, using the following adequate RMI:
The following argument positions are usable:
Uargs(p) = {1}, Uargs(s) = {}, Uargs(le) = {1}, Uargs(minus) = {},
Uargs(if) = {}, Uargs(p^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {},
Uargs(le^#) = {}, Uargs(c_3) = {}, Uargs(c_6) = {},
Uargs(minus^#) = {1}, Uargs(c_7) = {1}, Uargs(if^#) = {1, 2},
Uargs(c_9) = {1}
We have the following constructor-restricted matrix interpretation:
Interpretation Functions:
p(x1) = [1] x1 + [3]
0() = [2]
s(x1) = [1] x1 + [1]
le(x1, x2) = [1] x1 + [0] x2 + [2]
true() = [1]
false() = [0]
minus(x1, x2) = [0] x1 + [0] x2 + [0]
if(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
p^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1(x1) = [0] x1 + [0]
c_2(x1) = [0] x1 + [0]
le^#(x1, x2) = [0] x1 + [0] x2 + [0]
c_3(x1) = [0] x1 + [0]
c_4() = [0]
c_5() = [0]
c_6(x1) = [0] x1 + [0]
minus^#(x1, x2) = [3] x1 + [0] x2 + [0]
c_7(x1) = [1] x1 + [0]
if^#(x1, x2, x3) = [3] x1 + [3] x2 + [0] x3 + [0]
c_8() = [0]
c_9(x1) = [1] x1 + [0]
Complexity induced by the adequate RMI: YES(?,O(n^1))
We have not generated a proof for the resulting sub-problem.
4) 'matrix-interpretation of dimension 1' failed due to the following reason:
The input cannot be shown compatible
5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
match-boundness of the problem could not be verified.
6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
match-boundness of the problem could not be verified.