Problem Secret 05 TRS aprove5

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputSecret 05 TRS aprove5

stdout:

MAYBE

Problem:
 minus(x,0()) -> x
 minus(0(),y) -> 0()
 minus(s(x),s(y)) -> minus(p(s(x)),p(s(y)))
 minus(x,plus(y,z)) -> minus(minus(x,y),z)
 p(s(s(x))) -> s(p(s(x)))
 p(0()) -> s(s(0()))
 div(s(x),s(y)) -> s(div(minus(x,y),s(y)))
 div(plus(x,y),z) -> plus(div(x,z),div(y,z))
 plus(0(),y) -> y
 plus(s(x),y) -> s(plus(y,minus(s(x),s(0()))))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputSecret 05 TRS aprove5

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputSecret 05 TRS aprove5

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  minus(x, 0()) -> x
     , minus(0(), y) -> 0()
     , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
     , minus(x, plus(y, z)) -> minus(minus(x, y), z)
     , p(s(s(x))) -> s(p(s(x)))
     , p(0()) -> s(s(0()))
     , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
     , div(plus(x, y), z) -> plus(div(x, z), div(y, z))
     , plus(0(), y) -> y
     , plus(s(x), y) -> s(plus(y, minus(s(x), s(0()))))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: minus^#(x, 0()) -> c_0()
              , 2: minus^#(0(), y) -> c_1()
              , 3: minus^#(s(x), s(y)) -> c_2(minus^#(p(s(x)), p(s(y))))
              , 4: minus^#(x, plus(y, z)) -> c_3(minus^#(minus(x, y), z))
              , 5: p^#(s(s(x))) -> c_4(p^#(s(x)))
              , 6: p^#(0()) -> c_5()
              , 7: div^#(s(x), s(y)) -> c_6(div^#(minus(x, y), s(y)))
              , 8: div^#(plus(x, y), z) -> c_7(plus^#(div(x, z), div(y, z)))
              , 9: plus^#(0(), y) -> c_8()
              , 10: plus^#(s(x), y) -> c_9(plus^#(y, minus(s(x), s(0()))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                `->{8}                                                   [     inherited      ]
                    |
                    |->{9}                                               [         NA         ]
                    |
                    `->{10}                                              [     inherited      ]
                        |
                        `->{9}                                           [         NA         ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [   YES(?,O(n^1))    ]
             
             ->{3,4}                                                     [     inherited      ]
                |
                |->{1}                                                   [         NA         ]
                |
                `->{2}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {3,4}: inherited
             ---------------------
             
             This path is subsumed by the proof of path {3,4}->{1}.
           
           * Path {3,4}->{1}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), y) -> 0()
                , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
                , minus(x, plus(y, z)) -> minus(minus(x, y), z)
                , p(s(s(x))) -> s(p(s(x)))
                , p(0()) -> s(s(0()))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3,4}->{2}: MAYBE
             ----------------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), y) -> 0()
                , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
                , minus(x, plus(y, z)) -> minus(minus(x, y), z)
                , p(s(s(x))) -> s(p(s(x)))
                , p(0()) -> s(s(0()))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  minus^#(s(x), s(y)) -> c_2(minus^#(p(s(x)), p(s(y))))
                  , minus^#(x, plus(y, z)) -> c_3(minus^#(minus(x, y), z))
                  , minus^#(0(), y) -> c_1()
                  , minus(x, 0()) -> x
                  , minus(0(), y) -> 0()
                  , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
                  , minus(x, plus(y, z)) -> minus(minus(x, y), z)
                  , p(s(s(x))) -> s(p(s(x)))
                  , p(0()) -> s(s(0()))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(p) = {}, Uargs(plus) = {},
                 Uargs(div) = {}, Uargs(minus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {1},
                 Uargs(div^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(plus^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [3 3]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_5() = [0]
                        [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(s(s(x))) -> c_4(p^#(s(x)))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [1]
                        [0 0]      [0]
                p^#(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(p) = {}, Uargs(plus) = {},
                 Uargs(div) = {}, Uargs(minus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {},
                 Uargs(div^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(plus^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                p^#(x1) = [2 0] x1 + [7]
                          [2 2]      [7]
                c_5() = [0]
                        [1]
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{8}->{10}->{9}.
           
           * Path {7}->{8}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {7}->{8}->{10}->{9}.
           
           * Path {7}->{8}->{9}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), y) -> 0()
                , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
                , minus(x, plus(y, z)) -> minus(minus(x, y), z)
                , p(s(s(x))) -> s(p(s(x)))
                , p(0()) -> s(s(0()))
                , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
                , div(plus(x, y), z) -> plus(div(x, z), div(y, z))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(y, minus(s(x), s(0()))))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{8}->{10}: inherited
             ------------------------------
             
             This path is subsumed by the proof of path {7}->{8}->{10}->{9}.
           
           * Path {7}->{8}->{10}->{9}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), y) -> 0()
                , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
                , minus(x, plus(y, z)) -> minus(minus(x, y), z)
                , p(s(s(x))) -> s(p(s(x)))
                , p(0()) -> s(s(0()))
                , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
                , div(plus(x, y), z) -> plus(div(x, z), div(y, z))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(y, minus(s(x), s(0()))))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: minus^#(x, 0()) -> c_0()
              , 2: minus^#(0(), y) -> c_1()
              , 3: minus^#(s(x), s(y)) -> c_2(minus^#(p(s(x)), p(s(y))))
              , 4: minus^#(x, plus(y, z)) -> c_3(minus^#(minus(x, y), z))
              , 5: p^#(s(s(x))) -> c_4(p^#(s(x)))
              , 6: p^#(0()) -> c_5()
              , 7: div^#(s(x), s(y)) -> c_6(div^#(minus(x, y), s(y)))
              , 8: div^#(plus(x, y), z) -> c_7(plus^#(div(x, z), div(y, z)))
              , 9: plus^#(0(), y) -> c_8()
              , 10: plus^#(s(x), y) -> c_9(plus^#(y, minus(s(x), s(0()))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                `->{8}                                                   [     inherited      ]
                    |
                    |->{9}                                               [         NA         ]
                    |
                    `->{10}                                              [     inherited      ]
                        |
                        `->{9}                                           [         NA         ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [   YES(?,O(n^1))    ]
             
             ->{3,4}                                                     [     inherited      ]
                |
                |->{1}                                                   [         NA         ]
                |
                `->{2}                                                   [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {3,4}: inherited
             ---------------------
             
             This path is subsumed by the proof of path {3,4}->{1}.
           
           * Path {3,4}->{1}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), y) -> 0()
                , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
                , minus(x, plus(y, z)) -> minus(minus(x, y), z)
                , p(s(s(x))) -> s(p(s(x)))
                , p(0()) -> s(s(0()))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3,4}->{2}: MAYBE
             ----------------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), y) -> 0()
                , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
                , minus(x, plus(y, z)) -> minus(minus(x, y), z)
                , p(s(s(x))) -> s(p(s(x)))
                , p(0()) -> s(s(0()))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  minus^#(s(x), s(y)) -> c_2(minus^#(p(s(x)), p(s(y))))
                  , minus^#(x, plus(y, z)) -> c_3(minus^#(minus(x, y), z))
                  , minus^#(0(), y) -> c_1()
                  , minus(x, 0()) -> x
                  , minus(0(), y) -> 0()
                  , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
                  , minus(x, plus(y, z)) -> minus(minus(x, y), z)
                  , p(s(s(x))) -> s(p(s(x)))
                  , p(0()) -> s(s(0()))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(p) = {}, Uargs(plus) = {},
                 Uargs(div) = {}, Uargs(minus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {1},
                 Uargs(div^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(plus^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                p(x1) = [0] x1 + [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                p^#(x1) = [3] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                c_5() = [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(s(s(x))) -> c_4(p^#(s(x)))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                p^#(x1) = [1] x1 + [0]
                c_4(x1) = [1] x1 + [3]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(p) = {}, Uargs(plus) = {},
                 Uargs(div) = {}, Uargs(minus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {},
                 Uargs(div^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(plus^#) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                p^#(x1) = [1] x1 + [7]
                c_5() = [1]
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{8}->{10}->{9}.
           
           * Path {7}->{8}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {7}->{8}->{10}->{9}.
           
           * Path {7}->{8}->{9}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), y) -> 0()
                , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
                , minus(x, plus(y, z)) -> minus(minus(x, y), z)
                , p(s(s(x))) -> s(p(s(x)))
                , p(0()) -> s(s(0()))
                , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
                , div(plus(x, y), z) -> plus(div(x, z), div(y, z))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(y, minus(s(x), s(0()))))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{8}->{10}: inherited
             ------------------------------
             
             This path is subsumed by the proof of path {7}->{8}->{10}->{9}.
           
           * Path {7}->{8}->{10}->{9}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), y) -> 0()
                , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
                , minus(x, plus(y, z)) -> minus(minus(x, y), z)
                , p(s(s(x))) -> s(p(s(x)))
                , p(0()) -> s(s(0()))
                , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
                , div(plus(x, y), z) -> plus(div(x, z), div(y, z))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(y, minus(s(x), s(0()))))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    4) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    5) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputSecret 05 TRS aprove5

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputSecret 05 TRS aprove5

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  minus(x, 0()) -> x
     , minus(0(), y) -> 0()
     , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
     , minus(x, plus(y, z)) -> minus(minus(x, y), z)
     , p(s(s(x))) -> s(p(s(x)))
     , p(0()) -> s(s(0()))
     , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
     , div(plus(x, y), z) -> plus(div(x, z), div(y, z))
     , plus(0(), y) -> y
     , plus(s(x), y) -> s(plus(y, minus(s(x), s(0()))))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: minus^#(x, 0()) -> c_0(x)
              , 2: minus^#(0(), y) -> c_1()
              , 3: minus^#(s(x), s(y)) -> c_2(minus^#(p(s(x)), p(s(y))))
              , 4: minus^#(x, plus(y, z)) -> c_3(minus^#(minus(x, y), z))
              , 5: p^#(s(s(x))) -> c_4(p^#(s(x)))
              , 6: p^#(0()) -> c_5()
              , 7: div^#(s(x), s(y)) -> c_6(div^#(minus(x, y), s(y)))
              , 8: div^#(plus(x, y), z) -> c_7(plus^#(div(x, z), div(y, z)))
              , 9: plus^#(0(), y) -> c_8(y)
              , 10: plus^#(s(x), y) -> c_9(plus^#(y, minus(s(x), s(0()))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                `->{8}                                                   [     inherited      ]
                    |
                    |->{9}                                               [         NA         ]
                    |
                    `->{10}                                              [     inherited      ]
                        |
                        `->{9}                                           [         NA         ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [   YES(?,O(n^1))    ]
             
             ->{3,4}                                                     [     inherited      ]
                |
                |->{1}                                                   [       MAYBE        ]
                |
                `->{2}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {3,4}: inherited
             ---------------------
             
             This path is subsumed by the proof of path {3,4}->{1}.
           
           * Path {3,4}->{1}: MAYBE
             ----------------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), y) -> 0()
                , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
                , minus(x, plus(y, z)) -> minus(minus(x, y), z)
                , p(s(s(x))) -> s(p(s(x)))
                , p(0()) -> s(s(0()))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  minus^#(s(x), s(y)) -> c_2(minus^#(p(s(x)), p(s(y))))
                  , minus^#(x, plus(y, z)) -> c_3(minus^#(minus(x, y), z))
                  , minus^#(x, 0()) -> c_0(x)
                  , minus(x, 0()) -> x
                  , minus(0(), y) -> 0()
                  , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
                  , minus(x, plus(y, z)) -> minus(minus(x, y), z)
                  , p(s(s(x))) -> s(p(s(x)))
                  , p(0()) -> s(s(0()))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {3,4}->{2}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), y) -> 0()
                , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
                , minus(x, plus(y, z)) -> minus(minus(x, y), z)
                , p(s(s(x))) -> s(p(s(x)))
                , p(0()) -> s(s(0()))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(p) = {}, Uargs(plus) = {},
                 Uargs(div) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(p^#) = {},
                 Uargs(c_4) = {1}, Uargs(div^#) = {}, Uargs(c_6) = {},
                 Uargs(c_7) = {}, Uargs(plus^#) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [3 3]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_5() = [0]
                        [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(s(x))) -> c_4(p^#(s(x)))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [1]
                        [0 0]      [0]
                p^#(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(p) = {}, Uargs(plus) = {},
                 Uargs(div) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {},
                 Uargs(div^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(plus^#) = {}, Uargs(c_8) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1() = [0]
                        [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                p^#(x1) = [2 0] x1 + [7]
                          [2 2]      [7]
                c_5() = [0]
                        [1]
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{8}->{10}->{9}.
           
           * Path {7}->{8}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {7}->{8}->{10}->{9}.
           
           * Path {7}->{8}->{9}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), y) -> 0()
                , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
                , minus(x, plus(y, z)) -> minus(minus(x, y), z)
                , p(s(s(x))) -> s(p(s(x)))
                , p(0()) -> s(s(0()))
                , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
                , div(plus(x, y), z) -> plus(div(x, z), div(y, z))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(y, minus(s(x), s(0()))))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{8}->{10}: inherited
             ------------------------------
             
             This path is subsumed by the proof of path {7}->{8}->{10}->{9}.
           
           * Path {7}->{8}->{10}->{9}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), y) -> 0()
                , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
                , minus(x, plus(y, z)) -> minus(minus(x, y), z)
                , p(s(s(x))) -> s(p(s(x)))
                , p(0()) -> s(s(0()))
                , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
                , div(plus(x, y), z) -> plus(div(x, z), div(y, z))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(y, minus(s(x), s(0()))))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: minus^#(x, 0()) -> c_0(x)
              , 2: minus^#(0(), y) -> c_1()
              , 3: minus^#(s(x), s(y)) -> c_2(minus^#(p(s(x)), p(s(y))))
              , 4: minus^#(x, plus(y, z)) -> c_3(minus^#(minus(x, y), z))
              , 5: p^#(s(s(x))) -> c_4(p^#(s(x)))
              , 6: p^#(0()) -> c_5()
              , 7: div^#(s(x), s(y)) -> c_6(div^#(minus(x, y), s(y)))
              , 8: div^#(plus(x, y), z) -> c_7(plus^#(div(x, z), div(y, z)))
              , 9: plus^#(0(), y) -> c_8(y)
              , 10: plus^#(s(x), y) -> c_9(plus^#(y, minus(s(x), s(0()))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [     inherited      ]
                |
                `->{8}                                                   [     inherited      ]
                    |
                    |->{9}                                               [         NA         ]
                    |
                    `->{10}                                              [     inherited      ]
                        |
                        `->{9}                                           [         NA         ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [   YES(?,O(n^1))    ]
             
             ->{3,4}                                                     [     inherited      ]
                |
                |->{1}                                                   [       MAYBE        ]
                |
                `->{2}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {3,4}: inherited
             ---------------------
             
             This path is subsumed by the proof of path {3,4}->{1}.
           
           * Path {3,4}->{1}: MAYBE
             ----------------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), y) -> 0()
                , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
                , minus(x, plus(y, z)) -> minus(minus(x, y), z)
                , p(s(s(x))) -> s(p(s(x)))
                , p(0()) -> s(s(0()))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  minus^#(s(x), s(y)) -> c_2(minus^#(p(s(x)), p(s(y))))
                  , minus^#(x, plus(y, z)) -> c_3(minus^#(minus(x, y), z))
                  , minus^#(x, 0()) -> c_0(x)
                  , minus(x, 0()) -> x
                  , minus(0(), y) -> 0()
                  , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
                  , minus(x, plus(y, z)) -> minus(minus(x, y), z)
                  , p(s(s(x))) -> s(p(s(x)))
                  , p(0()) -> s(s(0()))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {3,4}->{2}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), y) -> 0()
                , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
                , minus(x, plus(y, z)) -> minus(minus(x, y), z)
                , p(s(s(x))) -> s(p(s(x)))
                , p(0()) -> s(s(0()))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(p) = {}, Uargs(plus) = {},
                 Uargs(div) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(p^#) = {},
                 Uargs(c_4) = {1}, Uargs(div^#) = {}, Uargs(c_6) = {},
                 Uargs(c_7) = {}, Uargs(plus^#) = {}, Uargs(c_8) = {},
                 Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                p(x1) = [0] x1 + [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                p^#(x1) = [3] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                c_5() = [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(s(x))) -> c_4(p^#(s(x)))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                p^#(x1) = [1] x1 + [0]
                c_4(x1) = [1] x1 + [3]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(p) = {}, Uargs(plus) = {},
                 Uargs(div) = {}, Uargs(minus^#) = {}, Uargs(c_0) = {},
                 Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(p^#) = {}, Uargs(c_4) = {},
                 Uargs(div^#) = {}, Uargs(c_6) = {}, Uargs(c_7) = {},
                 Uargs(plus^#) = {}, Uargs(c_8) = {}, Uargs(c_9) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1() = [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                c_9(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                p^#(x1) = [1] x1 + [7]
                c_5() = [1]
           
           * Path {7}: inherited
             -------------------
             
             This path is subsumed by the proof of path {7}->{8}->{10}->{9}.
           
           * Path {7}->{8}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {7}->{8}->{10}->{9}.
           
           * Path {7}->{8}->{9}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), y) -> 0()
                , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
                , minus(x, plus(y, z)) -> minus(minus(x, y), z)
                , p(s(s(x))) -> s(p(s(x)))
                , p(0()) -> s(s(0()))
                , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
                , div(plus(x, y), z) -> plus(div(x, z), div(y, z))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(y, minus(s(x), s(0()))))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{8}->{10}: inherited
             ------------------------------
             
             This path is subsumed by the proof of path {7}->{8}->{10}->{9}.
           
           * Path {7}->{8}->{10}->{9}: NA
             ----------------------------
             
             The usable rules for this path are:
             
               {  minus(x, 0()) -> x
                , minus(0(), y) -> 0()
                , minus(s(x), s(y)) -> minus(p(s(x)), p(s(y)))
                , minus(x, plus(y, z)) -> minus(minus(x, y), z)
                , p(s(s(x))) -> s(p(s(x)))
                , p(0()) -> s(s(0()))
                , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
                , div(plus(x, y), z) -> plus(div(x, z), div(y, z))
                , plus(0(), y) -> y
                , plus(s(x), y) -> s(plus(y, minus(s(x), s(0()))))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    4) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    5) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.