Problem Secret 05 TRS cime4

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputSecret 05 TRS cime4

stdout:

MAYBE

Problem:
 g(X) -> u(h(X),h(X),X)
 u(d(),c(Y),X) -> k(Y)
 h(d()) -> c(a())
 h(d()) -> c(b())
 f(k(a()),k(b()),X) -> f(X,X,X)

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputSecret 05 TRS cime4

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputSecret 05 TRS cime4

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  g(X) -> u(h(X), h(X), X)
     , u(d(), c(Y), X) -> k(Y)
     , h(d()) -> c(a())
     , h(d()) -> c(b())
     , f(k(a()), k(b()), X) -> f(X, X, X)}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: g^#(X) -> c_0(u^#(h(X), h(X), X))
              , 2: u^#(d(), c(Y), X) -> c_1()
              , 3: h^#(d()) -> c_2()
              , 4: h^#(d()) -> c_3()
              , 5: f^#(k(a()), k(b()), X) -> c_4(f^#(X, X, X))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [       MAYBE        ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: NA
             ------------
             
             The usable rules for this path are:
             
               {  h(d()) -> c(a())
                , h(d()) -> c(b())}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {1},
                 Uargs(u^#) = {1, 2}, Uargs(h^#) = {}, Uargs(f^#) = {},
                 Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                u(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                h(x1) = [0 0 0] x1 + [3]
                        [0 0 0]      [3]
                        [0 0 0]      [3]
                d() = [0]
                      [0]
                      [0]
                c(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                k(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g^#(x1) = [3 3 3] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                u^#(x1, x2, x3) = [3 2 0] x1 + [2 2 2] x2 + [0 0 0] x3 + [0]
                                  [3 3 3]      [3 3 3]      [3 3 3]      [0]
                                  [3 3 3]      [3 3 3]      [3 3 3]      [0]
                c_1() = [0]
                        [0]
                        [0]
                h^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(h^#) = {}, Uargs(f^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                u(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                h(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                d() = [0]
                      [0]
                      [0]
                c(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                k(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                u^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                h^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {u^#(d(), c(Y), X) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(c) = {}, Uargs(u^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                d() = [2]
                      [2]
                      [2]
                c(x1) = [0 0 0] x1 + [2]
                        [0 0 0]      [2]
                        [0 0 0]      [2]
                u^#(x1, x2, x3) = [2 2 2] x1 + [0 0 0] x2 + [0 0 0] x3 + [3]
                                  [0 0 2]      [2 0 0]      [0 0 0]      [7]
                                  [0 0 0]      [0 2 2]      [0 0 0]      [7]
                c_1() = [0]
                        [1]
                        [1]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(h^#) = {}, Uargs(f^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                u(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                h(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                d() = [0]
                      [0]
                      [0]
                c(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                k(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                u^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                h^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {h^#(d()) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(h^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                d() = [2]
                      [2]
                      [2]
                h^#(x1) = [0 2 0] x1 + [7]
                          [2 2 0]      [3]
                          [2 2 2]      [3]
                c_2() = [0]
                        [1]
                        [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(h^#) = {}, Uargs(f^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                u(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                h(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                d() = [0]
                      [0]
                      [0]
                c(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                k(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                u^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                h^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {h^#(d()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(h^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                d() = [2]
                      [2]
                      [2]
                h^#(x1) = [0 2 0] x1 + [7]
                          [2 2 0]      [3]
                          [2 2 2]      [3]
                c_3() = [0]
                        [1]
                        [1]
           
           * Path {5}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(h^#) = {}, Uargs(f^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                u(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                h(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                d() = [0]
                      [0]
                      [0]
                c(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                k(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                u^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                h^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [3 3 3] x3 + [0]
                                  [3 3 3]      [3 3 3]      [3 3 3]      [0]
                                  [3 3 3]      [3 3 3]      [3 3 3]      [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {f^#(k(a()), k(b()), X) -> c_4(f^#(X, X, X))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: g^#(X) -> c_0(u^#(h(X), h(X), X))
              , 2: u^#(d(), c(Y), X) -> c_1()
              , 3: h^#(d()) -> c_2()
              , 4: h^#(d()) -> c_3()
              , 5: f^#(k(a()), k(b()), X) -> c_4(f^#(X, X, X))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [       MAYBE        ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: NA
             ------------
             
             The usable rules for this path are:
             
               {  h(d()) -> c(a())
                , h(d()) -> c(b())}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {1},
                 Uargs(u^#) = {1, 2}, Uargs(h^#) = {}, Uargs(f^#) = {},
                 Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                u(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                h(x1) = [0 0] x1 + [3]
                        [0 0]      [3]
                d() = [0]
                      [0]
                c(x1) = [1 0] x1 + [0]
                        [0 0]      [0]
                k(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a() = [1]
                      [0]
                b() = [1]
                      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g^#(x1) = [3 3] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                u^#(x1, x2, x3) = [1 0] x1 + [1 3] x2 + [0 0] x3 + [0]
                                  [3 3]      [3 3]      [3 3]      [0]
                c_1() = [0]
                        [0]
                h^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(h^#) = {}, Uargs(f^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                u(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                h(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                d() = [0]
                      [0]
                c(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                k(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                u^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                h^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {u^#(d(), c(Y), X) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(c) = {}, Uargs(u^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                d() = [2]
                      [2]
                c(x1) = [0 0] x1 + [2]
                        [0 0]      [0]
                u^#(x1, x2, x3) = [2 2] x1 + [2 0] x2 + [0 0] x3 + [3]
                                  [0 0]      [0 0]      [0 0]      [3]
                c_1() = [0]
                        [1]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(h^#) = {}, Uargs(f^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                u(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                h(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                d() = [0]
                      [0]
                c(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                k(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                u^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                h^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {h^#(d()) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(h^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                d() = [2]
                      [2]
                h^#(x1) = [2 0] x1 + [7]
                          [2 2]      [7]
                c_2() = [0]
                        [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(h^#) = {}, Uargs(f^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                u(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                h(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                d() = [0]
                      [0]
                c(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                k(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                u^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                h^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {h^#(d()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(h^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                d() = [2]
                      [2]
                h^#(x1) = [2 0] x1 + [7]
                          [2 2]      [7]
                c_3() = [0]
                        [1]
           
           * Path {5}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(h^#) = {}, Uargs(f^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                u(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                h(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                d() = [0]
                      [0]
                c(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                k(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                u^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_1() = [0]
                        [0]
                h^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [3 3] x3 + [0]
                                  [3 3]      [3 3]      [3 3]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {f^#(k(a()), k(b()), X) -> c_4(f^#(X, X, X))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: g^#(X) -> c_0(u^#(h(X), h(X), X))
              , 2: u^#(d(), c(Y), X) -> c_1()
              , 3: h^#(d()) -> c_2()
              , 4: h^#(d()) -> c_3()
              , 5: f^#(k(a()), k(b()), X) -> c_4(f^#(X, X, X))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [       MAYBE        ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: NA
             ------------
             
             The usable rules for this path are:
             
               {  h(d()) -> c(a())
                , h(d()) -> c(b())}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {1},
                 Uargs(u^#) = {1, 2}, Uargs(h^#) = {}, Uargs(f^#) = {},
                 Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0] x1 + [0]
                u(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                h(x1) = [1] x1 + [2]
                d() = [1]
                c(x1) = [0] x1 + [2]
                k(x1) = [0] x1 + [0]
                a() = [3]
                b() = [3]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g^#(x1) = [3] x1 + [0]
                c_0(x1) = [1] x1 + [0]
                u^#(x1, x2, x3) = [1] x1 + [1] x2 + [0] x3 + [0]
                c_1() = [0]
                h^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_4(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(h^#) = {}, Uargs(f^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0] x1 + [0]
                u(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                h(x1) = [0] x1 + [0]
                d() = [0]
                c(x1) = [0] x1 + [0]
                k(x1) = [0] x1 + [0]
                a() = [0]
                b() = [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                u^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1() = [0]
                h^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_4(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {u^#(d(), c(Y), X) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(c) = {}, Uargs(u^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                d() = [2]
                c(x1) = [0] x1 + [2]
                u^#(x1, x2, x3) = [2] x1 + [2] x2 + [0] x3 + [7]
                c_1() = [0]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(h^#) = {}, Uargs(f^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0] x1 + [0]
                u(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                h(x1) = [0] x1 + [0]
                d() = [0]
                c(x1) = [0] x1 + [0]
                k(x1) = [0] x1 + [0]
                a() = [0]
                b() = [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                u^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1() = [0]
                h^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_4(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {h^#(d()) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(h^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                d() = [7]
                h^#(x1) = [1] x1 + [7]
                c_2() = [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(h^#) = {}, Uargs(f^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0] x1 + [0]
                u(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                h(x1) = [0] x1 + [0]
                d() = [0]
                c(x1) = [0] x1 + [0]
                k(x1) = [0] x1 + [0]
                a() = [0]
                b() = [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                u^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1() = [0]
                h^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_4(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {h^#(d()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(h^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                d() = [7]
                h^#(x1) = [1] x1 + [7]
                c_3() = [1]
           
           * Path {5}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(h^#) = {}, Uargs(f^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0] x1 + [0]
                u(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                h(x1) = [0] x1 + [0]
                d() = [0]
                c(x1) = [0] x1 + [0]
                k(x1) = [0] x1 + [0]
                a() = [0]
                b() = [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                u^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1() = [0]
                h^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [3] x3 + [0]
                c_4(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {f^#(k(a()), k(b()), X) -> c_4(f^#(X, X, X))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputSecret 05 TRS cime4

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputSecret 05 TRS cime4

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  g(X) -> u(h(X), h(X), X)
     , u(d(), c(Y), X) -> k(Y)
     , h(d()) -> c(a())
     , h(d()) -> c(b())
     , f(k(a()), k(b()), X) -> f(X, X, X)}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: g^#(X) -> c_0(u^#(h(X), h(X), X))
              , 2: u^#(d(), c(Y), X) -> c_1(Y)
              , 3: h^#(d()) -> c_2()
              , 4: h^#(d()) -> c_3()
              , 5: f^#(k(a()), k(b()), X) -> c_4(f^#(X, X, X))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [       MAYBE        ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: NA
             ------------
             
             The usable rules for this path are:
             
               {  h(d()) -> c(a())
                , h(d()) -> c(b())}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {1},
                 Uargs(u^#) = {1, 2}, Uargs(c_1) = {}, Uargs(h^#) = {},
                 Uargs(f^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                u(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                h(x1) = [0 0 0] x1 + [3]
                        [0 0 0]      [3]
                        [0 0 0]      [3]
                d() = [0]
                      [0]
                      [0]
                c(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                k(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g^#(x1) = [3 3 3] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                u^#(x1, x2, x3) = [3 2 0] x1 + [2 2 2] x2 + [0 0 0] x3 + [0]
                                  [3 3 3]      [3 3 3]      [3 3 3]      [0]
                                  [3 3 3]      [3 3 3]      [3 3 3]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                h^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(c_1) = {}, Uargs(h^#) = {}, Uargs(f^#) = {},
                 Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                u(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                h(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                d() = [0]
                      [0]
                      [0]
                c(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                k(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                u^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [3 3 3] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                h^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {u^#(d(), c(Y), X) -> c_1(Y)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(c) = {}, Uargs(u^#) = {}, Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                d() = [2]
                      [3]
                      [0]
                c(x1) = [1 2 2] x1 + [0]
                        [0 0 2]      [0]
                        [0 0 0]      [2]
                u^#(x1, x2, x3) = [2 2 0] x1 + [2 2 1] x2 + [0 0 0] x3 + [3]
                                  [0 2 0]      [2 0 2]      [0 0 0]      [3]
                                  [2 0 0]      [0 0 0]      [0 0 0]      [7]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [1]
                          [0 0 0]      [1]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(c_1) = {}, Uargs(h^#) = {}, Uargs(f^#) = {},
                 Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                u(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                h(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                d() = [0]
                      [0]
                      [0]
                c(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                k(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                u^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                h^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {h^#(d()) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(h^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                d() = [2]
                      [2]
                      [2]
                h^#(x1) = [0 2 0] x1 + [7]
                          [2 2 0]      [3]
                          [2 2 2]      [3]
                c_2() = [0]
                        [1]
                        [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(c_1) = {}, Uargs(h^#) = {}, Uargs(f^#) = {},
                 Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                u(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                h(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                d() = [0]
                      [0]
                      [0]
                c(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                k(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                u^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                h^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {h^#(d()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(h^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                d() = [2]
                      [2]
                      [2]
                h^#(x1) = [0 2 0] x1 + [7]
                          [2 2 0]      [3]
                          [2 2 2]      [3]
                c_3() = [0]
                        [1]
                        [1]
           
           * Path {5}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(c_1) = {}, Uargs(h^#) = {}, Uargs(f^#) = {},
                 Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                u(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                h(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                d() = [0]
                      [0]
                      [0]
                c(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                k(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                u^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                h^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [3 3 3] x3 + [0]
                                  [3 3 3]      [3 3 3]      [3 3 3]      [0]
                                  [3 3 3]      [3 3 3]      [3 3 3]      [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {f^#(k(a()), k(b()), X) -> c_4(f^#(X, X, X))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: g^#(X) -> c_0(u^#(h(X), h(X), X))
              , 2: u^#(d(), c(Y), X) -> c_1(Y)
              , 3: h^#(d()) -> c_2()
              , 4: h^#(d()) -> c_3()
              , 5: f^#(k(a()), k(b()), X) -> c_4(f^#(X, X, X))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [       MAYBE        ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: NA
             ------------
             
             The usable rules for this path are:
             
               {  h(d()) -> c(a())
                , h(d()) -> c(b())}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {1},
                 Uargs(u^#) = {1, 2}, Uargs(c_1) = {}, Uargs(h^#) = {},
                 Uargs(f^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                u(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                h(x1) = [0 0] x1 + [3]
                        [0 0]      [3]
                d() = [0]
                      [0]
                c(x1) = [1 0] x1 + [0]
                        [0 0]      [0]
                k(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a() = [1]
                      [0]
                b() = [1]
                      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g^#(x1) = [3 3] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                u^#(x1, x2, x3) = [1 0] x1 + [1 3] x2 + [0 0] x3 + [0]
                                  [3 3]      [3 3]      [3 3]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                h^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(c_1) = {}, Uargs(h^#) = {}, Uargs(f^#) = {},
                 Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                u(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                h(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                d() = [0]
                      [0]
                c(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                k(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                u^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [3 3] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                h^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {u^#(d(), c(Y), X) -> c_1(Y)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(c) = {}, Uargs(u^#) = {}, Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                d() = [2]
                      [2]
                c(x1) = [1 2] x1 + [0]
                        [0 0]      [2]
                u^#(x1, x2, x3) = [2 2] x1 + [0 2] x2 + [0 0] x3 + [3]
                                  [2 2]      [2 2]      [0 0]      [3]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [1]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(c_1) = {}, Uargs(h^#) = {}, Uargs(f^#) = {},
                 Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                u(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                h(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                d() = [0]
                      [0]
                c(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                k(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                u^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                h^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {h^#(d()) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(h^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                d() = [2]
                      [2]
                h^#(x1) = [2 0] x1 + [7]
                          [2 2]      [7]
                c_2() = [0]
                        [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(c_1) = {}, Uargs(h^#) = {}, Uargs(f^#) = {},
                 Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                u(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                h(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                d() = [0]
                      [0]
                c(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                k(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                u^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                h^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {h^#(d()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(h^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                d() = [2]
                      [2]
                h^#(x1) = [2 0] x1 + [7]
                          [2 2]      [7]
                c_3() = [0]
                        [1]
           
           * Path {5}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(c_1) = {}, Uargs(h^#) = {}, Uargs(f^#) = {},
                 Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                u(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                h(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                d() = [0]
                      [0]
                c(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                k(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                u^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                h^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [3 3] x3 + [0]
                                  [3 3]      [3 3]      [3 3]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {f^#(k(a()), k(b()), X) -> c_4(f^#(X, X, X))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: g^#(X) -> c_0(u^#(h(X), h(X), X))
              , 2: u^#(d(), c(Y), X) -> c_1(Y)
              , 3: h^#(d()) -> c_2()
              , 4: h^#(d()) -> c_3()
              , 5: f^#(k(a()), k(b()), X) -> c_4(f^#(X, X, X))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [       MAYBE        ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: NA
             ------------
             
             The usable rules for this path are:
             
               {  h(d()) -> c(a())
                , h(d()) -> c(b())}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {1},
                 Uargs(u^#) = {1, 2}, Uargs(c_1) = {}, Uargs(h^#) = {},
                 Uargs(f^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0] x1 + [0]
                u(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                h(x1) = [1] x1 + [2]
                d() = [1]
                c(x1) = [0] x1 + [2]
                k(x1) = [0] x1 + [0]
                a() = [3]
                b() = [3]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g^#(x1) = [3] x1 + [0]
                c_0(x1) = [1] x1 + [0]
                u^#(x1, x2, x3) = [1] x1 + [1] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                h^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_4(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(c_1) = {}, Uargs(h^#) = {}, Uargs(f^#) = {},
                 Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0] x1 + [0]
                u(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                h(x1) = [0] x1 + [0]
                d() = [0]
                c(x1) = [0] x1 + [0]
                k(x1) = [0] x1 + [0]
                a() = [0]
                b() = [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                u^#(x1, x2, x3) = [0] x1 + [0] x2 + [3] x3 + [0]
                c_1(x1) = [1] x1 + [0]
                h^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_4(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {u^#(d(), c(Y), X) -> c_1(Y)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(c) = {}, Uargs(u^#) = {}, Uargs(c_1) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                d() = [2]
                c(x1) = [1] x1 + [2]
                u^#(x1, x2, x3) = [2] x1 + [2] x2 + [0] x3 + [7]
                c_1(x1) = [0] x1 + [0]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(c_1) = {}, Uargs(h^#) = {}, Uargs(f^#) = {},
                 Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0] x1 + [0]
                u(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                h(x1) = [0] x1 + [0]
                d() = [0]
                c(x1) = [0] x1 + [0]
                k(x1) = [0] x1 + [0]
                a() = [0]
                b() = [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                u^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                h^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_4(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {h^#(d()) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(h^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                d() = [7]
                h^#(x1) = [1] x1 + [7]
                c_2() = [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(c_1) = {}, Uargs(h^#) = {}, Uargs(f^#) = {},
                 Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0] x1 + [0]
                u(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                h(x1) = [0] x1 + [0]
                d() = [0]
                c(x1) = [0] x1 + [0]
                k(x1) = [0] x1 + [0]
                a() = [0]
                b() = [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                u^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                h^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_4(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {h^#(d()) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(h^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                d() = [7]
                h^#(x1) = [1] x1 + [7]
                c_3() = [1]
           
           * Path {5}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(g) = {}, Uargs(u) = {}, Uargs(h) = {}, Uargs(c) = {},
                 Uargs(k) = {}, Uargs(f) = {}, Uargs(g^#) = {}, Uargs(c_0) = {},
                 Uargs(u^#) = {}, Uargs(c_1) = {}, Uargs(h^#) = {}, Uargs(f^#) = {},
                 Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                g(x1) = [0] x1 + [0]
                u(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                h(x1) = [0] x1 + [0]
                d() = [0]
                c(x1) = [0] x1 + [0]
                k(x1) = [0] x1 + [0]
                a() = [0]
                b() = [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g^#(x1) = [0] x1 + [0]
                c_0(x1) = [0] x1 + [0]
                u^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                h^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [3] x3 + [0]
                c_4(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {f^#(k(a()), k(b()), X) -> c_4(f^#(X, X, X))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.