Problem Secret 05 TRS tpa3

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputSecret 05 TRS tpa3

stdout:

MAYBE

Problem:
 -(x,0()) -> x
 -(s(x),s(y)) -> -(x,y)
 +(0(),y) -> y
 +(s(x),y) -> s(+(x,y))
 *(x,0()) -> 0()
 *(x,s(y)) -> +(x,*(x,y))
 f(s(x)) -> f(-(*(s(s(0())),s(x)),s(s(x))))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputSecret 05 TRS tpa3

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputSecret 05 TRS tpa3

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  -(x, 0()) -> x
     , -(s(x), s(y)) -> -(x, y)
     , +(0(), y) -> y
     , +(s(x), y) -> s(+(x, y))
     , *(x, 0()) -> 0()
     , *(x, s(y)) -> +(x, *(x, y))
     , f(s(x)) -> f(-(*(s(s(0())), s(x)), s(s(x))))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: -^#(x, 0()) -> c_0()
              , 2: -^#(s(x), s(y)) -> c_1(-^#(x, y))
              , 3: +^#(0(), y) -> c_2()
              , 4: +^#(s(x), y) -> c_3(+^#(x, y))
              , 5: *^#(x, 0()) -> c_4()
              , 6: *^#(x, s(y)) -> c_5(+^#(x, *(x, y)))
              , 7: f^#(s(x)) -> c_6(f^#(-(*(s(s(0())), s(x)), s(s(x)))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [         NA         ]
             
             ->{6}                                                       [     inherited      ]
                |
                |->{3}                                                   [       MAYBE        ]
                |
                `->{4}                                                   [     inherited      ]
                    |
                    `->{3}                                               [         NA         ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^3))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(-) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(*) = {},
                 Uargs(f) = {}, Uargs(-^#) = {}, Uargs(c_1) = {1}, Uargs(+^#) = {},
                 Uargs(c_3) = {}, Uargs(*^#) = {}, Uargs(c_5) = {}, Uargs(f^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                -(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                *(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                -^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [3 3 3]      [3 3 3]      [0]
                              [3 3 3]      [3 3 3]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                *^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {-^#(s(x), s(y)) -> c_1(-^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(-^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [2]
                        [0 0 2]      [2]
                        [0 0 0]      [0]
                -^#(x1, x2) = [1 0 0] x1 + [5 0 0] x2 + [0]
                              [2 2 0]      [0 2 0]      [0]
                              [4 0 0]      [0 2 0]      [0]
                c_1(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {2}->{1}: YES(?,O(n^3))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(-) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(*) = {},
                 Uargs(f) = {}, Uargs(-^#) = {}, Uargs(c_1) = {1}, Uargs(+^#) = {},
                 Uargs(c_3) = {}, Uargs(*^#) = {}, Uargs(c_5) = {}, Uargs(f^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                -(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                *(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                -^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                *^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {-^#(x, 0()) -> c_0()}
               Weak Rules: {-^#(s(x), s(y)) -> c_1(-^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(-^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 2 0] x1 + [2]
                        [0 1 3]      [2]
                        [0 0 1]      [2]
                -^#(x1, x2) = [0 0 0] x1 + [0 2 2] x2 + [0]
                              [0 0 2]      [2 2 0]      [0]
                              [0 0 0]      [0 2 2]      [0]
                c_0() = [1]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [0]
                          [0 0 0]      [7]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(-) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(*) = {},
                 Uargs(f) = {}, Uargs(-^#) = {}, Uargs(c_1) = {}, Uargs(+^#) = {},
                 Uargs(c_3) = {}, Uargs(*^#) = {}, Uargs(c_5) = {}, Uargs(f^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                -(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                *(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                -^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                *^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {*^#(x, 0()) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(*^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                *^#(x1, x2) = [0 0 0] x1 + [0 2 0] x2 + [7]
                              [0 0 0]      [2 2 0]      [3]
                              [0 0 0]      [2 2 2]      [3]
                c_4() = [0]
                        [1]
                        [1]
           
           * Path {6}: inherited
             -------------------
             
             This path is subsumed by the proof of path {6}->{4}->{3}.
           
           * Path {6}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  *(x, 0()) -> 0()
                , *(x, s(y)) -> +(x, *(x, y))
                , +(0(), y) -> y
                , +(s(x), y) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  *^#(x, s(y)) -> c_5(+^#(x, *(x, y)))
                  , +^#(0(), y) -> c_2()
                  , *(x, 0()) -> 0()
                  , *(x, s(y)) -> +(x, *(x, y))
                  , +(0(), y) -> y
                  , +(s(x), y) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6}->{4}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {6}->{4}->{3}.
           
           * Path {6}->{4}->{3}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  *(x, 0()) -> 0()
                , *(x, s(y)) -> +(x, *(x, y))
                , +(0(), y) -> y
                , +(s(x), y) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: NA
             ------------
             
             The usable rules for this path are:
             
               {  -(x, 0()) -> x
                , -(s(x), s(y)) -> -(x, y)
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(x, *(x, y))
                , +(0(), y) -> y
                , +(s(x), y) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: -^#(x, 0()) -> c_0()
              , 2: -^#(s(x), s(y)) -> c_1(-^#(x, y))
              , 3: +^#(0(), y) -> c_2()
              , 4: +^#(s(x), y) -> c_3(+^#(x, y))
              , 5: *^#(x, 0()) -> c_4()
              , 6: *^#(x, s(y)) -> c_5(+^#(x, *(x, y)))
              , 7: f^#(s(x)) -> c_6(f^#(-(*(s(s(0())), s(x)), s(s(x)))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [         NA         ]
             
             ->{6}                                                       [     inherited      ]
                |
                |->{3}                                                   [       MAYBE        ]
                |
                `->{4}                                                   [     inherited      ]
                    |
                    `->{3}                                               [         NA         ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [   YES(?,O(n^2))    ]
                |
                `->{1}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(-) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(*) = {},
                 Uargs(f) = {}, Uargs(-^#) = {}, Uargs(c_1) = {1}, Uargs(+^#) = {},
                 Uargs(c_3) = {}, Uargs(*^#) = {}, Uargs(c_5) = {}, Uargs(f^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                -^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                              [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                *^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {-^#(s(x), s(y)) -> c_1(-^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(-^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                -^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                              [0 2]      [0 0]      [0]
                c_1(x1) = [1 2] x1 + [5]
                          [0 0]      [3]
           
           * Path {2}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(-) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(*) = {},
                 Uargs(f) = {}, Uargs(-^#) = {}, Uargs(c_1) = {1}, Uargs(+^#) = {},
                 Uargs(c_3) = {}, Uargs(*^#) = {}, Uargs(c_5) = {}, Uargs(f^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                -^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                *^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {-^#(x, 0()) -> c_0()}
               Weak Rules: {-^#(s(x), s(y)) -> c_1(-^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(-^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                -^#(x1, x2) = [2 1] x1 + [2 0] x2 + [4]
                              [0 0]      [4 1]      [0]
                c_0() = [1]
                        [0]
                c_1(x1) = [1 0] x1 + [6]
                          [0 0]      [7]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(-) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(*) = {},
                 Uargs(f) = {}, Uargs(-^#) = {}, Uargs(c_1) = {}, Uargs(+^#) = {},
                 Uargs(c_3) = {}, Uargs(*^#) = {}, Uargs(c_5) = {}, Uargs(f^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                -^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                *^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {*^#(x, 0()) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(*^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                *^#(x1, x2) = [0 0] x1 + [2 0] x2 + [7]
                              [0 0]      [2 2]      [7]
                c_4() = [0]
                        [1]
           
           * Path {6}: inherited
             -------------------
             
             This path is subsumed by the proof of path {6}->{4}->{3}.
           
           * Path {6}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  *(x, 0()) -> 0()
                , *(x, s(y)) -> +(x, *(x, y))
                , +(0(), y) -> y
                , +(s(x), y) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  *^#(x, s(y)) -> c_5(+^#(x, *(x, y)))
                  , +^#(0(), y) -> c_2()
                  , *(x, 0()) -> 0()
                  , *(x, s(y)) -> +(x, *(x, y))
                  , +(0(), y) -> y
                  , +(s(x), y) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6}->{4}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {6}->{4}->{3}.
           
           * Path {6}->{4}->{3}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  *(x, 0()) -> 0()
                , *(x, s(y)) -> +(x, *(x, y))
                , +(0(), y) -> y
                , +(s(x), y) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: NA
             ------------
             
             The usable rules for this path are:
             
               {  -(x, 0()) -> x
                , -(s(x), s(y)) -> -(x, y)
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(x, *(x, y))
                , +(0(), y) -> y
                , +(s(x), y) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: -^#(x, 0()) -> c_0()
              , 2: -^#(s(x), s(y)) -> c_1(-^#(x, y))
              , 3: +^#(0(), y) -> c_2()
              , 4: +^#(s(x), y) -> c_3(+^#(x, y))
              , 5: *^#(x, 0()) -> c_4()
              , 6: *^#(x, s(y)) -> c_5(+^#(x, *(x, y)))
              , 7: f^#(s(x)) -> c_6(f^#(-(*(s(s(0())), s(x)), s(s(x)))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [         NA         ]
             
             ->{6}                                                       [     inherited      ]
                |
                |->{3}                                                   [       MAYBE        ]
                |
                `->{4}                                                   [     inherited      ]
                    |
                    `->{3}                                               [         NA         ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(-) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(*) = {},
                 Uargs(f) = {}, Uargs(-^#) = {}, Uargs(c_1) = {1}, Uargs(+^#) = {},
                 Uargs(c_3) = {}, Uargs(*^#) = {}, Uargs(c_5) = {}, Uargs(f^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                -(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                *(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1) = [0] x1 + [0]
                -^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                *^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                f^#(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {-^#(s(x), s(y)) -> c_1(-^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(-^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                -^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_1(x1) = [1] x1 + [7]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(-) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(*) = {},
                 Uargs(f) = {}, Uargs(-^#) = {}, Uargs(c_1) = {1}, Uargs(+^#) = {},
                 Uargs(c_3) = {}, Uargs(*^#) = {}, Uargs(c_5) = {}, Uargs(f^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                -(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                *(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1) = [0] x1 + [0]
                -^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                *^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                f^#(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {-^#(x, 0()) -> c_0()}
               Weak Rules: {-^#(s(x), s(y)) -> c_1(-^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(-^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                -^#(x1, x2) = [2] x1 + [2] x2 + [4]
                c_0() = [1]
                c_1(x1) = [1] x1 + [7]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(-) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(*) = {},
                 Uargs(f) = {}, Uargs(-^#) = {}, Uargs(c_1) = {}, Uargs(+^#) = {},
                 Uargs(c_3) = {}, Uargs(*^#) = {}, Uargs(c_5) = {}, Uargs(f^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                -(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                *(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1) = [0] x1 + [0]
                -^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                *^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                f^#(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {*^#(x, 0()) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(*^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                *^#(x1, x2) = [0] x1 + [1] x2 + [7]
                c_4() = [1]
           
           * Path {6}: inherited
             -------------------
             
             This path is subsumed by the proof of path {6}->{4}->{3}.
           
           * Path {6}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  *(x, 0()) -> 0()
                , *(x, s(y)) -> +(x, *(x, y))
                , +(0(), y) -> y
                , +(s(x), y) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  *^#(x, s(y)) -> c_5(+^#(x, *(x, y)))
                  , +^#(0(), y) -> c_2()
                  , *(x, 0()) -> 0()
                  , *(x, s(y)) -> +(x, *(x, y))
                  , +(0(), y) -> y
                  , +(s(x), y) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6}->{4}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {6}->{4}->{3}.
           
           * Path {6}->{4}->{3}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  *(x, 0()) -> 0()
                , *(x, s(y)) -> +(x, *(x, y))
                , +(0(), y) -> y
                , +(s(x), y) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: NA
             ------------
             
             The usable rules for this path are:
             
               {  -(x, 0()) -> x
                , -(s(x), s(y)) -> -(x, y)
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(x, *(x, y))
                , +(0(), y) -> y
                , +(s(x), y) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputSecret 05 TRS tpa3

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputSecret 05 TRS tpa3

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  -(x, 0()) -> x
     , -(s(x), s(y)) -> -(x, y)
     , +(0(), y) -> y
     , +(s(x), y) -> s(+(x, y))
     , *(x, 0()) -> 0()
     , *(x, s(y)) -> +(x, *(x, y))
     , f(s(x)) -> f(-(*(s(s(0())), s(x)), s(s(x))))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: -^#(x, 0()) -> c_0(x)
              , 2: -^#(s(x), s(y)) -> c_1(-^#(x, y))
              , 3: +^#(0(), y) -> c_2(y)
              , 4: +^#(s(x), y) -> c_3(+^#(x, y))
              , 5: *^#(x, 0()) -> c_4()
              , 6: *^#(x, s(y)) -> c_5(+^#(x, *(x, y)))
              , 7: f^#(s(x)) -> c_6(f^#(-(*(s(s(0())), s(x)), s(s(x)))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [         NA         ]
             
             ->{6}                                                       [     inherited      ]
                |
                |->{3}                                                   [       MAYBE        ]
                |
                `->{4}                                                   [     inherited      ]
                    |
                    `->{3}                                               [         NA         ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(-) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(*) = {},
                 Uargs(f) = {}, Uargs(-^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(+^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(*^#) = {},
                 Uargs(c_5) = {}, Uargs(f^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                -(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                *(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                -^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [3 3 3]      [3 3 3]      [0]
                              [3 3 3]      [3 3 3]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                *^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {-^#(s(x), s(y)) -> c_1(-^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(-^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [2]
                        [0 0 2]      [2]
                        [0 0 0]      [0]
                -^#(x1, x2) = [1 0 0] x1 + [5 0 0] x2 + [0]
                              [2 2 0]      [0 2 0]      [0]
                              [4 0 0]      [0 2 0]      [0]
                c_1(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {2}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(-) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(*) = {},
                 Uargs(f) = {}, Uargs(-^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(+^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(*^#) = {},
                 Uargs(c_5) = {}, Uargs(f^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                -(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                *(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                -^#(x1, x2) = [3 3 3] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                *^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {-^#(x, 0()) -> c_0(x)}
               Weak Rules: {-^#(s(x), s(y)) -> c_1(-^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(-^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 2 1] x1 + [0]
                        [0 0 4]      [2]
                        [0 0 1]      [2]
                -^#(x1, x2) = [2 0 2] x1 + [2 0 2] x2 + [0]
                              [0 2 0]      [0 3 2]      [0]
                              [4 2 2]      [5 2 0]      [0]
                c_0(x1) = [0 0 0] x1 + [1]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [6]
                          [0 0 0]      [3]
                          [2 3 0]      [7]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(-) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(*) = {},
                 Uargs(f) = {}, Uargs(-^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(+^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(*^#) = {},
                 Uargs(c_5) = {}, Uargs(f^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                -(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                +(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                *(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                f(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                -^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                +^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                *^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                f^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {*^#(x, 0()) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(*^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                *^#(x1, x2) = [0 0 0] x1 + [0 2 0] x2 + [7]
                              [0 0 0]      [2 2 0]      [3]
                              [0 0 0]      [2 2 2]      [3]
                c_4() = [0]
                        [1]
                        [1]
           
           * Path {6}: inherited
             -------------------
             
             This path is subsumed by the proof of path {6}->{4}->{3}.
           
           * Path {6}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  *(x, 0()) -> 0()
                , *(x, s(y)) -> +(x, *(x, y))
                , +(0(), y) -> y
                , +(s(x), y) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  *^#(x, s(y)) -> c_5(+^#(x, *(x, y)))
                  , +^#(0(), y) -> c_2(y)
                  , *(x, 0()) -> 0()
                  , *(x, s(y)) -> +(x, *(x, y))
                  , +(0(), y) -> y
                  , +(s(x), y) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6}->{4}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {6}->{4}->{3}.
           
           * Path {6}->{4}->{3}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  *(x, 0()) -> 0()
                , *(x, s(y)) -> +(x, *(x, y))
                , +(0(), y) -> y
                , +(s(x), y) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: NA
             ------------
             
             The usable rules for this path are:
             
               {  -(x, 0()) -> x
                , -(s(x), s(y)) -> -(x, y)
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(x, *(x, y))
                , +(0(), y) -> y
                , +(s(x), y) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: -^#(x, 0()) -> c_0(x)
              , 2: -^#(s(x), s(y)) -> c_1(-^#(x, y))
              , 3: +^#(0(), y) -> c_2(y)
              , 4: +^#(s(x), y) -> c_3(+^#(x, y))
              , 5: *^#(x, 0()) -> c_4()
              , 6: *^#(x, s(y)) -> c_5(+^#(x, *(x, y)))
              , 7: f^#(s(x)) -> c_6(f^#(-(*(s(s(0())), s(x)), s(s(x)))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [         NA         ]
             
             ->{6}                                                       [     inherited      ]
                |
                |->{3}                                                   [       MAYBE        ]
                |
                `->{4}                                                   [     inherited      ]
                    |
                    `->{3}                                               [         NA         ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [   YES(?,O(n^2))    ]
                |
                `->{1}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(-) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(*) = {},
                 Uargs(f) = {}, Uargs(-^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(+^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(*^#) = {},
                 Uargs(c_5) = {}, Uargs(f^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                -^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                              [3 3]      [3 3]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                *^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {-^#(s(x), s(y)) -> c_1(-^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(-^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                -^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                              [0 2]      [0 0]      [0]
                c_1(x1) = [1 2] x1 + [5]
                          [0 0]      [3]
           
           * Path {2}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(-) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(*) = {},
                 Uargs(f) = {}, Uargs(-^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(+^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(*^#) = {},
                 Uargs(c_5) = {}, Uargs(f^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                -^#(x1, x2) = [3 3] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                *^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {-^#(x, 0()) -> c_0(x)}
               Weak Rules: {-^#(s(x), s(y)) -> c_1(-^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(-^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                s(x1) = [1 2] x1 + [0]
                        [0 1]      [0]
                -^#(x1, x2) = [2 2] x1 + [0 2] x2 + [0]
                              [4 1]      [3 2]      [0]
                c_0(x1) = [0 0] x1 + [1]
                          [0 1]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [2 0]      [0]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(-) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(*) = {},
                 Uargs(f) = {}, Uargs(-^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(+^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(*^#) = {},
                 Uargs(c_5) = {}, Uargs(f^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                -(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                +(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                *(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                f(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                -^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                +^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                *^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                f^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {*^#(x, 0()) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(*^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                *^#(x1, x2) = [0 0] x1 + [2 0] x2 + [7]
                              [0 0]      [2 2]      [7]
                c_4() = [0]
                        [1]
           
           * Path {6}: inherited
             -------------------
             
             This path is subsumed by the proof of path {6}->{4}->{3}.
           
           * Path {6}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  *(x, 0()) -> 0()
                , *(x, s(y)) -> +(x, *(x, y))
                , +(0(), y) -> y
                , +(s(x), y) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  *^#(x, s(y)) -> c_5(+^#(x, *(x, y)))
                  , +^#(0(), y) -> c_2(y)
                  , *(x, 0()) -> 0()
                  , *(x, s(y)) -> +(x, *(x, y))
                  , +(0(), y) -> y
                  , +(s(x), y) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6}->{4}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {6}->{4}->{3}.
           
           * Path {6}->{4}->{3}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  *(x, 0()) -> 0()
                , *(x, s(y)) -> +(x, *(x, y))
                , +(0(), y) -> y
                , +(s(x), y) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: NA
             ------------
             
             The usable rules for this path are:
             
               {  -(x, 0()) -> x
                , -(s(x), s(y)) -> -(x, y)
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(x, *(x, y))
                , +(0(), y) -> y
                , +(s(x), y) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: -^#(x, 0()) -> c_0(x)
              , 2: -^#(s(x), s(y)) -> c_1(-^#(x, y))
              , 3: +^#(0(), y) -> c_2(y)
              , 4: +^#(s(x), y) -> c_3(+^#(x, y))
              , 5: *^#(x, 0()) -> c_4()
              , 6: *^#(x, s(y)) -> c_5(+^#(x, *(x, y)))
              , 7: f^#(s(x)) -> c_6(f^#(-(*(s(s(0())), s(x)), s(s(x)))))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [         NA         ]
             
             ->{6}                                                       [     inherited      ]
                |
                |->{3}                                                   [       MAYBE        ]
                |
                `->{4}                                                   [     inherited      ]
                    |
                    `->{3}                                               [         NA         ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                `->{1}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(-) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(*) = {},
                 Uargs(f) = {}, Uargs(-^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(+^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(*^#) = {},
                 Uargs(c_5) = {}, Uargs(f^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                -(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                *(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1) = [0] x1 + [0]
                -^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                *^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                f^#(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {-^#(s(x), s(y)) -> c_1(-^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(-^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                -^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_1(x1) = [1] x1 + [7]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(-) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(*) = {},
                 Uargs(f) = {}, Uargs(-^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1},
                 Uargs(+^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(*^#) = {},
                 Uargs(c_5) = {}, Uargs(f^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                -(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                *(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1) = [0] x1 + [0]
                -^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                *^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                f^#(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {-^#(x, 0()) -> c_0(x)}
               Weak Rules: {-^#(s(x), s(y)) -> c_1(-^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(-^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                s(x1) = [1] x1 + [2]
                -^#(x1, x2) = [2] x1 + [2] x2 + [2]
                c_0(x1) = [0] x1 + [1]
                c_1(x1) = [1] x1 + [5]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(-) = {}, Uargs(s) = {}, Uargs(+) = {}, Uargs(*) = {},
                 Uargs(f) = {}, Uargs(-^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(+^#) = {}, Uargs(c_2) = {}, Uargs(c_3) = {}, Uargs(*^#) = {},
                 Uargs(c_5) = {}, Uargs(f^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                -(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                +(x1, x2) = [0] x1 + [0] x2 + [0]
                *(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1) = [0] x1 + [0]
                -^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                +^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                *^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5(x1) = [0] x1 + [0]
                f^#(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {*^#(x, 0()) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(*^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                *^#(x1, x2) = [0] x1 + [1] x2 + [7]
                c_4() = [1]
           
           * Path {6}: inherited
             -------------------
             
             This path is subsumed by the proof of path {6}->{4}->{3}.
           
           * Path {6}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  *(x, 0()) -> 0()
                , *(x, s(y)) -> +(x, *(x, y))
                , +(0(), y) -> y
                , +(s(x), y) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  *^#(x, s(y)) -> c_5(+^#(x, *(x, y)))
                  , +^#(0(), y) -> c_2(y)
                  , *(x, 0()) -> 0()
                  , *(x, s(y)) -> +(x, *(x, y))
                  , +(0(), y) -> y
                  , +(s(x), y) -> s(+(x, y))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6}->{4}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {6}->{4}->{3}.
           
           * Path {6}->{4}->{3}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  *(x, 0()) -> 0()
                , *(x, s(y)) -> +(x, *(x, y))
                , +(0(), y) -> y
                , +(s(x), y) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: NA
             ------------
             
             The usable rules for this path are:
             
               {  -(x, 0()) -> x
                , -(s(x), s(y)) -> -(x, y)
                , *(x, 0()) -> 0()
                , *(x, s(y)) -> +(x, *(x, y))
                , +(0(), y) -> y
                , +(s(x), y) -> s(+(x, y))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.