Problem Secret 06 TRS divExp

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputSecret 06 TRS divExp

stdout:

MAYBE

Problem:
 minus(x,x) -> 0()
 minus(s(x),s(y)) -> minus(x,y)
 minus(0(),x) -> 0()
 minus(x,0()) -> x
 div(s(x),s(y)) -> s(div(minus(x,y),s(y)))
 div(0(),s(y)) -> 0()
 f(x,0(),b) -> x
 f(x,s(y),b) -> div(f(x,minus(s(y),s(0())),b),b)

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputSecret 06 TRS divExp

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputSecret 06 TRS divExp

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  minus(x, x) -> 0()
     , minus(s(x), s(y)) -> minus(x, y)
     , minus(0(), x) -> 0()
     , minus(x, 0()) -> x
     , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
     , div(0(), s(y)) -> 0()
     , f(x, 0(), b) -> x
     , f(x, s(y), b) -> div(f(x, minus(s(y), s(0())), b), b)}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: minus^#(x, x) -> c_0()
              , 2: minus^#(s(x), s(y)) -> c_1(minus^#(x, y))
              , 3: minus^#(0(), x) -> c_2()
              , 4: minus^#(x, 0()) -> c_3()
              , 5: div^#(s(x), s(y)) -> c_4(div^#(minus(x, y), s(y)))
              , 6: div^#(0(), s(y)) -> c_5()
              , 7: f^#(x, 0(), b) -> c_6()
              , 8: f^#(x, s(y), b) ->
                   c_7(div^#(f(x, minus(s(y), s(0())), b), b))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{8}                                                       [     inherited      ]
                |
                |->{5}                                                   [     inherited      ]
                |   |
                |   `->{6}                                               [         NA         ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [   YES(?,O(n^2))    ]
                |
                |->{1}                                                   [   YES(?,O(n^2))    ]
                |
                |->{3}                                                   [   YES(?,O(n^2))    ]
                |
                `->{4}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(div) = {}, Uargs(f) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {1}, Uargs(div^#) = {},
                 Uargs(c_4) = {}, Uargs(f^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                  [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                minus^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                                  [0 2]      [0 0]      [0]
                c_1(x1) = [1 2] x1 + [5]
                          [0 0]      [3]
           
           * Path {2}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(div) = {}, Uargs(f) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {1}, Uargs(div^#) = {},
                 Uargs(c_4) = {}, Uargs(f^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, x) -> c_0()}
               Weak Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 4] x1 + [0]
                        [0 1]      [0]
                minus^#(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                                  [0 4]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {2}->{3}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(div) = {}, Uargs(f) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {1}, Uargs(div^#) = {},
                 Uargs(c_4) = {}, Uargs(f^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(0(), x) -> c_2()}
               Weak Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                minus^#(x1, x2) = [3 3] x1 + [4 0] x2 + [0]
                                  [4 1]      [2 0]      [0]
                c_1(x1) = [1 0] x1 + [3]
                          [0 0]      [7]
                c_2() = [1]
                        [0]
           
           * Path {2}->{4}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(div) = {}, Uargs(f) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {1}, Uargs(div^#) = {},
                 Uargs(c_4) = {}, Uargs(f^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_3()}
               Weak Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                minus^#(x1, x2) = [2 1] x1 + [2 0] x2 + [4]
                                  [0 0]      [4 1]      [0]
                c_1(x1) = [1 0] x1 + [6]
                          [0 0]      [7]
                c_3() = [1]
                        [0]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(div) = {}, Uargs(f) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {}, Uargs(div^#) = {},
                 Uargs(c_4) = {}, Uargs(f^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {f^#(x, 0(), b) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(f^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                f^#(x1, x2, x3) = [0 0] x1 + [2 0] x2 + [0 0] x3 + [7]
                                  [0 0]      [2 2]      [0 0]      [7]
                c_6() = [0]
                        [1]
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{5}->{6}.
           
           * Path {8}->{5}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {8}->{5}->{6}.
           
           * Path {8}->{5}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  minus(x, x) -> 0()
                , minus(s(x), s(y)) -> minus(x, y)
                , minus(0(), x) -> 0()
                , minus(x, 0()) -> x
                , f(x, 0(), b) -> x
                , f(x, s(y), b) -> div(f(x, minus(s(y), s(0())), b), b)
                , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
                , div(0(), s(y)) -> 0()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8}->{6}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, x) -> 0()
                , minus(s(x), s(y)) -> minus(x, y)
                , minus(0(), x) -> 0()
                , minus(x, 0()) -> x
                , f(x, 0(), b) -> x
                , f(x, s(y), b) -> div(f(x, minus(s(y), s(0())), b), b)
                , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
                , div(0(), s(y)) -> 0()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: minus^#(x, x) -> c_0()
              , 2: minus^#(s(x), s(y)) -> c_1(minus^#(x, y))
              , 3: minus^#(0(), x) -> c_2()
              , 4: minus^#(x, 0()) -> c_3()
              , 5: div^#(s(x), s(y)) -> c_4(div^#(minus(x, y), s(y)))
              , 6: div^#(0(), s(y)) -> c_5()
              , 7: f^#(x, 0(), b) -> c_6()
              , 8: f^#(x, s(y), b) ->
                   c_7(div^#(f(x, minus(s(y), s(0())), b), b))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{8}                                                       [     inherited      ]
                |
                |->{5}                                                   [     inherited      ]
                |   |
                |   `->{6}                                               [         NA         ]
                |
                `->{6}                                                   [       MAYBE        ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |
                |->{3}                                                   [   YES(?,O(n^1))    ]
                |
                `->{4}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(div) = {}, Uargs(f) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {1}, Uargs(div^#) = {},
                 Uargs(c_4) = {}, Uargs(f^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                minus^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_1(x1) = [1] x1 + [7]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(div) = {}, Uargs(f) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {1}, Uargs(div^#) = {},
                 Uargs(c_4) = {}, Uargs(f^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, x) -> c_0()}
               Weak Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                minus^#(x1, x2) = [2] x1 + [2] x2 + [2]
                c_0() = [1]
                c_1(x1) = [1] x1 + [5]
           
           * Path {2}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(div) = {}, Uargs(f) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {1}, Uargs(div^#) = {},
                 Uargs(c_4) = {}, Uargs(f^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(0(), x) -> c_2()}
               Weak Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                minus^#(x1, x2) = [2] x1 + [0] x2 + [4]
                c_1(x1) = [1] x1 + [2]
                c_2() = [1]
           
           * Path {2}->{4}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(div) = {}, Uargs(f) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {1}, Uargs(div^#) = {},
                 Uargs(c_4) = {}, Uargs(f^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_3()}
               Weak Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                minus^#(x1, x2) = [2] x1 + [2] x2 + [4]
                c_1(x1) = [1] x1 + [7]
                c_3() = [1]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(div) = {}, Uargs(f) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {}, Uargs(div^#) = {},
                 Uargs(c_4) = {}, Uargs(f^#) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_6() = [0]
                c_7(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {f^#(x, 0(), b) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(f^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                f^#(x1, x2, x3) = [0] x1 + [1] x2 + [0] x3 + [7]
                c_6() = [1]
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{5}->{6}.
           
           * Path {8}->{5}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {8}->{5}->{6}.
           
           * Path {8}->{5}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  minus(x, x) -> 0()
                , minus(s(x), s(y)) -> minus(x, y)
                , minus(0(), x) -> 0()
                , minus(x, 0()) -> x
                , f(x, 0(), b) -> x
                , f(x, s(y), b) -> div(f(x, minus(s(y), s(0())), b), b)
                , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
                , div(0(), s(y)) -> 0()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8}->{6}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  minus(x, x) -> 0()
                , minus(s(x), s(y)) -> minus(x, y)
                , minus(0(), x) -> 0()
                , minus(x, 0()) -> x
                , f(x, 0(), b) -> x
                , f(x, s(y), b) -> div(f(x, minus(s(y), s(0())), b), b)
                , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
                , div(0(), s(y)) -> 0()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  f^#(x, s(y), b) -> c_7(div^#(f(x, minus(s(y), s(0())), b), b))
                  , div^#(0(), s(y)) -> c_5()
                  , minus(x, x) -> 0()
                  , minus(s(x), s(y)) -> minus(x, y)
                  , minus(0(), x) -> 0()
                  , minus(x, 0()) -> x
                  , f(x, 0(), b) -> x
                  , f(x, s(y), b) -> div(f(x, minus(s(y), s(0())), b), b)
                  , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
                  , div(0(), s(y)) -> 0()}
             
             Proof Output:    
               The input cannot be shown compatible
    
    3) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    4) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    5) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputSecret 06 TRS divExp

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputSecret 06 TRS divExp

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  minus(x, x) -> 0()
     , minus(s(x), s(y)) -> minus(x, y)
     , minus(0(), x) -> 0()
     , minus(x, 0()) -> x
     , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
     , div(0(), s(y)) -> 0()
     , f(x, 0(), b) -> x
     , f(x, s(y), b) -> div(f(x, minus(s(y), s(0())), b), b)}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: minus^#(x, x) -> c_0()
              , 2: minus^#(s(x), s(y)) -> c_1(minus^#(x, y))
              , 3: minus^#(0(), x) -> c_2()
              , 4: minus^#(x, 0()) -> c_3(x)
              , 5: div^#(s(x), s(y)) -> c_4(div^#(minus(x, y), s(y)))
              , 6: div^#(0(), s(y)) -> c_5()
              , 7: f^#(x, 0(), b) -> c_6(x)
              , 8: f^#(x, s(y), b) ->
                   c_7(div^#(f(x, minus(s(y), s(0())), b), b))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{8}                                                       [     inherited      ]
                |
                |->{5}                                                   [     inherited      ]
                |   |
                |   `->{6}                                               [         NA         ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [   YES(?,O(n^2))    ]
                |
                |->{1}                                                   [   YES(?,O(n^2))    ]
                |
                |->{3}                                                   [   YES(?,O(n^2))    ]
                |
                `->{4}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(div) = {}, Uargs(f) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {1}, Uargs(c_3) = {},
                 Uargs(div^#) = {}, Uargs(c_4) = {}, Uargs(f^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                  [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                minus^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                                  [0 2]      [0 0]      [0]
                c_1(x1) = [1 2] x1 + [5]
                          [0 0]      [3]
           
           * Path {2}->{1}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(div) = {}, Uargs(f) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {1}, Uargs(c_3) = {},
                 Uargs(div^#) = {}, Uargs(c_4) = {}, Uargs(f^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, x) -> c_0()}
               Weak Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 4] x1 + [0]
                        [0 1]      [0]
                minus^#(x1, x2) = [1 0] x1 + [0 0] x2 + [1]
                                  [0 4]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {2}->{3}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(div) = {}, Uargs(f) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {1}, Uargs(c_3) = {},
                 Uargs(div^#) = {}, Uargs(c_4) = {}, Uargs(f^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(0(), x) -> c_2()}
               Weak Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                minus^#(x1, x2) = [3 3] x1 + [4 0] x2 + [0]
                                  [4 1]      [2 0]      [0]
                c_1(x1) = [1 0] x1 + [3]
                          [0 0]      [7]
                c_2() = [1]
                        [0]
           
           * Path {2}->{4}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(div) = {}, Uargs(f) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {1}, Uargs(c_3) = {},
                 Uargs(div^#) = {}, Uargs(c_4) = {}, Uargs(f^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [3 3] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_3(x)}
               Weak Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1},
                 Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                s(x1) = [1 2] x1 + [0]
                        [0 1]      [0]
                minus^#(x1, x2) = [2 2] x1 + [0 2] x2 + [0]
                                  [4 1]      [3 2]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [2 0]      [0]
                c_3(x1) = [0 0] x1 + [1]
                          [0 1]      [0]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(div) = {}, Uargs(f) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {}, Uargs(c_3) = {},
                 Uargs(div^#) = {}, Uargs(c_4) = {}, Uargs(f^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                div(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                minus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                div^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
                f^#(x1, x2, x3) = [3 3] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_6(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {f^#(x, 0(), b) -> c_6(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(f^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                f^#(x1, x2, x3) = [7 7] x1 + [2 2] x2 + [0 0] x3 + [7]
                                  [7 7]      [2 2]      [0 0]      [3]
                c_6(x1) = [1 3] x1 + [0]
                          [1 1]      [1]
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{5}->{6}.
           
           * Path {8}->{5}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {8}->{5}->{6}.
           
           * Path {8}->{5}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  minus(x, x) -> 0()
                , minus(s(x), s(y)) -> minus(x, y)
                , minus(0(), x) -> 0()
                , minus(x, 0()) -> x
                , f(x, 0(), b) -> x
                , f(x, s(y), b) -> div(f(x, minus(s(y), s(0())), b), b)
                , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
                , div(0(), s(y)) -> 0()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8}->{6}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  minus(x, x) -> 0()
                , minus(s(x), s(y)) -> minus(x, y)
                , minus(0(), x) -> 0()
                , minus(x, 0()) -> x
                , f(x, 0(), b) -> x
                , f(x, s(y), b) -> div(f(x, minus(s(y), s(0())), b), b)
                , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
                , div(0(), s(y)) -> 0()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: minus^#(x, x) -> c_0()
              , 2: minus^#(s(x), s(y)) -> c_1(minus^#(x, y))
              , 3: minus^#(0(), x) -> c_2()
              , 4: minus^#(x, 0()) -> c_3(x)
              , 5: div^#(s(x), s(y)) -> c_4(div^#(minus(x, y), s(y)))
              , 6: div^#(0(), s(y)) -> c_5()
              , 7: f^#(x, 0(), b) -> c_6(x)
              , 8: f^#(x, s(y), b) ->
                   c_7(div^#(f(x, minus(s(y), s(0())), b), b))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{8}                                                       [     inherited      ]
                |
                |->{5}                                                   [     inherited      ]
                |   |
                |   `->{6}                                               [         NA         ]
                |
                `->{6}                                                   [       MAYBE        ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [   YES(?,O(n^1))    ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |
                |->{3}                                                   [   YES(?,O(n^1))    ]
                |
                `->{4}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(div) = {}, Uargs(f) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {1}, Uargs(c_3) = {},
                 Uargs(div^#) = {}, Uargs(c_4) = {}, Uargs(f^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                minus^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_1(x1) = [1] x1 + [7]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(div) = {}, Uargs(f) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {1}, Uargs(c_3) = {},
                 Uargs(div^#) = {}, Uargs(c_4) = {}, Uargs(f^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, x) -> c_0()}
               Weak Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                minus^#(x1, x2) = [2] x1 + [2] x2 + [2]
                c_0() = [1]
                c_1(x1) = [1] x1 + [5]
           
           * Path {2}->{3}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(div) = {}, Uargs(f) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {1}, Uargs(c_3) = {},
                 Uargs(div^#) = {}, Uargs(c_4) = {}, Uargs(f^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(0(), x) -> c_2()}
               Weak Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                minus^#(x1, x2) = [2] x1 + [0] x2 + [4]
                c_1(x1) = [1] x1 + [2]
                c_2() = [1]
           
           * Path {2}->{4}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(div) = {}, Uargs(f) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {1}, Uargs(c_3) = {},
                 Uargs(div^#) = {}, Uargs(c_4) = {}, Uargs(f^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_6(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {minus^#(x, 0()) -> c_3(x)}
               Weak Rules: {minus^#(s(x), s(y)) -> c_1(minus^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(minus^#) = {}, Uargs(c_1) = {1},
                 Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                s(x1) = [1] x1 + [2]
                minus^#(x1, x2) = [2] x1 + [2] x2 + [2]
                c_1(x1) = [1] x1 + [5]
                c_3(x1) = [0] x1 + [1]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(minus) = {}, Uargs(s) = {}, Uargs(div) = {}, Uargs(f) = {},
                 Uargs(minus^#) = {}, Uargs(c_1) = {}, Uargs(c_3) = {},
                 Uargs(div^#) = {}, Uargs(c_4) = {}, Uargs(f^#) = {},
                 Uargs(c_6) = {}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                minus(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                div(x1, x2) = [0] x1 + [0] x2 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                minus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                div^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
                f^#(x1, x2, x3) = [3] x1 + [0] x2 + [0] x3 + [0]
                c_6(x1) = [1] x1 + [0]
                c_7(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {f^#(x, 0(), b) -> c_6(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(f^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [5]
                f^#(x1, x2, x3) = [7] x1 + [3] x2 + [0] x3 + [0]
                c_6(x1) = [1] x1 + [0]
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{5}->{6}.
           
           * Path {8}->{5}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {8}->{5}->{6}.
           
           * Path {8}->{5}->{6}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  minus(x, x) -> 0()
                , minus(s(x), s(y)) -> minus(x, y)
                , minus(0(), x) -> 0()
                , minus(x, 0()) -> x
                , f(x, 0(), b) -> x
                , f(x, s(y), b) -> div(f(x, minus(s(y), s(0())), b), b)
                , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
                , div(0(), s(y)) -> 0()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8}->{6}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  minus(x, x) -> 0()
                , minus(s(x), s(y)) -> minus(x, y)
                , minus(0(), x) -> 0()
                , minus(x, 0()) -> x
                , f(x, 0(), b) -> x
                , f(x, s(y), b) -> div(f(x, minus(s(y), s(0())), b), b)
                , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
                , div(0(), s(y)) -> 0()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  f^#(x, s(y), b) -> c_7(div^#(f(x, minus(s(y), s(0())), b), b))
                  , div^#(0(), s(y)) -> c_5()
                  , minus(x, x) -> 0()
                  , minus(s(x), s(y)) -> minus(x, y)
                  , minus(0(), x) -> 0()
                  , minus(x, 0()) -> x
                  , f(x, 0(), b) -> x
                  , f(x, s(y), b) -> div(f(x, minus(s(y), s(0())), b), b)
                  , div(s(x), s(y)) -> s(div(minus(x, y), s(y)))
                  , div(0(), s(y)) -> 0()}
             
             Proof Output:    
               The input cannot be shown compatible
    
    3) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    4) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    5) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.