Problem Secret 06 TRS sumList

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputSecret 06 TRS sumList

stdout:

MAYBE

Problem:
 isEmpty(cons(x,xs)) -> false()
 isEmpty(nil()) -> true()
 isZero(0()) -> true()
 isZero(s(x)) -> false()
 head(cons(x,xs)) -> x
 tail(cons(x,xs)) -> xs
 tail(nil()) -> nil()
 p(s(s(x))) -> s(p(s(x)))
 p(s(0())) -> 0()
 p(0()) -> 0()
 inc(s(x)) -> s(inc(x))
 inc(0()) -> s(0())
 sumList(xs,y) -> if(isEmpty(xs),isZero(head(xs)),y,tail(xs),cons(p(head(xs)),tail(xs)),inc(y))
 if(true(),b,y,xs,ys,x) -> y
 if(false(),true(),y,xs,ys,x) -> sumList(xs,y)
 if(false(),false(),y,xs,ys,x) -> sumList(ys,x)
 sum(xs) -> sumList(xs,0())

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputSecret 06 TRS sumList

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputSecret 06 TRS sumList

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  isEmpty(cons(x, xs)) -> false()
     , isEmpty(nil()) -> true()
     , isZero(0()) -> true()
     , isZero(s(x)) -> false()
     , head(cons(x, xs)) -> x
     , tail(cons(x, xs)) -> xs
     , tail(nil()) -> nil()
     , p(s(s(x))) -> s(p(s(x)))
     , p(s(0())) -> 0()
     , p(0()) -> 0()
     , inc(s(x)) -> s(inc(x))
     , inc(0()) -> s(0())
     , sumList(xs, y) ->
       if(isEmpty(xs),
          isZero(head(xs)),
          y,
          tail(xs),
          cons(p(head(xs)), tail(xs)),
          inc(y))
     , if(true(), b, y, xs, ys, x) -> y
     , if(false(), true(), y, xs, ys, x) -> sumList(xs, y)
     , if(false(), false(), y, xs, ys, x) -> sumList(ys, x)
     , sum(xs) -> sumList(xs, 0())}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: isEmpty^#(cons(x, xs)) -> c_0()
              , 2: isEmpty^#(nil()) -> c_1()
              , 3: isZero^#(0()) -> c_2()
              , 4: isZero^#(s(x)) -> c_3()
              , 5: head^#(cons(x, xs)) -> c_4()
              , 6: tail^#(cons(x, xs)) -> c_5()
              , 7: tail^#(nil()) -> c_6()
              , 8: p^#(s(s(x))) -> c_7(p^#(s(x)))
              , 9: p^#(s(0())) -> c_8()
              , 10: p^#(0()) -> c_9()
              , 11: inc^#(s(x)) -> c_10(inc^#(x))
              , 12: inc^#(0()) -> c_11()
              , 13: sumList^#(xs, y) ->
                    c_12(if^#(isEmpty(xs),
                              isZero(head(xs)),
                              y,
                              tail(xs),
                              cons(p(head(xs)), tail(xs)),
                              inc(y)))
              , 14: if^#(true(), b, y, xs, ys, x) -> c_13()
              , 15: if^#(false(), true(), y, xs, ys, x) -> c_14(sumList^#(xs, y))
              , 16: if^#(false(), false(), y, xs, ys, x) ->
                    c_15(sumList^#(ys, x))
              , 17: sum^#(xs) -> c_16(sumList^#(xs, 0()))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{17}                                                      [     inherited      ]
                |
                `->{13,16,15}                                            [       MAYBE        ]
                    |
                    `->{14}                                              [         NA         ]
             
             ->{11}                                                      [   YES(?,O(n^1))    ]
                |
                `->{12}                                                  [   YES(?,O(n^1))    ]
             
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{8}                                                       [   YES(?,O(n^1))    ]
                |
                `->{9}                                                   [   YES(?,O(n^1))    ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isEmpty^#(cons(x, xs)) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(isEmpty^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                               [0 0]      [0 0]      [2]
                isEmpty^#(x1) = [2 0] x1 + [7]
                                [2 2]      [7]
                c_0() = [0]
                        [1]
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isEmpty^#(nil()) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isEmpty^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                isEmpty^#(x1) = [2 0] x1 + [7]
                                [2 2]      [7]
                c_1() = [0]
                        [1]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isZero^#(0()) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                isZero^#(x1) = [2 0] x1 + [7]
                               [2 2]      [7]
                c_2() = [0]
                        [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isZero^#(s(x)) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0 0] x1 + [2]
                        [0 0]      [2]
                isZero^#(x1) = [2 0] x1 + [7]
                               [2 2]      [7]
                c_3() = [0]
                        [1]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {head^#(cons(x, xs)) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(head^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                               [0 0]      [0 0]      [2]
                head^#(x1) = [2 0] x1 + [7]
                             [2 2]      [7]
                c_4() = [0]
                        [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {tail^#(cons(x, xs)) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                               [0 0]      [0 0]      [2]
                tail^#(x1) = [2 0] x1 + [7]
                             [2 2]      [7]
                c_5() = [0]
                        [1]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {tail^#(nil()) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                tail^#(x1) = [2 0] x1 + [7]
                             [2 2]      [7]
                c_6() = [0]
                        [1]
           
           * Path {8}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {1}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [3 3]      [0]
                c_7(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(s(s(x))) -> c_7(p^#(s(x)))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [1]
                        [0 0]      [0]
                p^#(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {8}->{9}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {1}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(s(0())) -> c_8()}
               Weak Rules: {p^#(s(s(x))) -> c_7(p^#(s(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [0]
                s(x1) = [0 2] x1 + [2]
                        [0 1]      [0]
                p^#(x1) = [2 0] x1 + [0]
                          [2 0]      [0]
                c_7(x1) = [1 0] x1 + [0]
                          [0 0]      [3]
                c_8() = [1]
                        [0]
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                p^#(x1) = [2 0] x1 + [7]
                          [2 2]      [7]
                c_9() = [0]
                        [1]
           
           * Path {11}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {1},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [3 3] x1 + [0]
                            [3 3]      [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {inc^#(s(x)) -> c_10(inc^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                inc^#(x1) = [0 1] x1 + [1]
                            [0 0]      [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
           
           * Path {11}->{12}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {1},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {inc^#(0()) -> c_11()}
               Weak Rules: {inc^#(s(x)) -> c_10(inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 2] x1 + [1]
                        [0 0]      [3]
                inc^#(x1) = [1 2] x1 + [2]
                            [6 1]      [0]
                c_10(x1) = [1 0] x1 + [5]
                           [2 0]      [3]
                c_11() = [1]
                         [0]
           
           * Path {17}: inherited
             --------------------
             
             This path is subsumed by the proof of path {17}->{13,16,15}.
           
           * Path {17}->{13,16,15}: MAYBE
             ----------------------------
             
             The usable rules for this path are:
             
               {  isEmpty(cons(x, xs)) -> false()
                , isEmpty(nil()) -> true()
                , isZero(0()) -> true()
                , isZero(s(x)) -> false()
                , head(cons(x, xs)) -> x
                , tail(cons(x, xs)) -> xs
                , tail(nil()) -> nil()
                , p(s(s(x))) -> s(p(s(x)))
                , p(s(0())) -> 0()
                , p(0()) -> 0()
                , inc(s(x)) -> s(inc(x))
                , inc(0()) -> s(0())}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  sum^#(xs) -> c_16(sumList^#(xs, 0()))
                  , sumList^#(xs, y) ->
                    c_12(if^#(isEmpty(xs),
                              isZero(head(xs)),
                              y,
                              tail(xs),
                              cons(p(head(xs)), tail(xs)),
                              inc(y)))
                  , if^#(false(), false(), y, xs, ys, x) -> c_15(sumList^#(ys, x))
                  , if^#(false(), true(), y, xs, ys, x) -> c_14(sumList^#(xs, y))
                  , isEmpty(cons(x, xs)) -> false()
                  , isEmpty(nil()) -> true()
                  , isZero(0()) -> true()
                  , isZero(s(x)) -> false()
                  , head(cons(x, xs)) -> x
                  , tail(cons(x, xs)) -> xs
                  , tail(nil()) -> nil()
                  , p(s(s(x))) -> s(p(s(x)))
                  , p(s(0())) -> 0()
                  , p(0()) -> 0()
                  , inc(s(x)) -> s(inc(x))
                  , inc(0()) -> s(0())}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {17}->{13,16,15}->{14}: NA
             -------------------------------
             
             The usable rules for this path are:
             
               {  isEmpty(cons(x, xs)) -> false()
                , isEmpty(nil()) -> true()
                , isZero(0()) -> true()
                , isZero(s(x)) -> false()
                , head(cons(x, xs)) -> x
                , tail(cons(x, xs)) -> xs
                , tail(nil()) -> nil()
                , p(s(s(x))) -> s(p(s(x)))
                , p(s(0())) -> 0()
                , p(0()) -> 0()
                , inc(s(x)) -> s(inc(x))
                , inc(0()) -> s(0())}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {1, 2}, Uargs(isZero) = {1},
                 Uargs(s) = {1}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {1},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {1},
                 Uargs(if^#) = {1, 2, 4, 5, 6}, Uargs(c_14) = {1},
                 Uargs(c_15) = {1}, Uargs(sum^#) = {}, Uargs(c_16) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [3]
                              [3 3]      [3]
                cons(x1, x2) = [1 1] x1 + [1 3] x2 + [0]
                               [0 1]      [0 1]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [1 0] x1 + [3]
                             [3 3]      [3]
                0() = [1]
                      [2]
                s(x1) = [1 0] x1 + [1]
                        [0 0]      [0]
                head(x1) = [3 3] x1 + [3]
                           [3 3]      [3]
                tail(x1) = [2 0] x1 + [2]
                           [0 2]      [0]
                p(x1) = [2 0] x1 + [0]
                        [2 0]      [0]
                inc(x1) = [3 0] x1 + [0]
                          [0 2]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4() = [0]
                        [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [3 0] x1 + [3 0] x2 + [0 0] x3 + [3 0] x4 + [3 0] x5 + [3 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_15(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: isEmpty^#(cons(x, xs)) -> c_0()
              , 2: isEmpty^#(nil()) -> c_1()
              , 3: isZero^#(0()) -> c_2()
              , 4: isZero^#(s(x)) -> c_3()
              , 5: head^#(cons(x, xs)) -> c_4()
              , 6: tail^#(cons(x, xs)) -> c_5()
              , 7: tail^#(nil()) -> c_6()
              , 8: p^#(s(s(x))) -> c_7(p^#(s(x)))
              , 9: p^#(s(0())) -> c_8()
              , 10: p^#(0()) -> c_9()
              , 11: inc^#(s(x)) -> c_10(inc^#(x))
              , 12: inc^#(0()) -> c_11()
              , 13: sumList^#(xs, y) ->
                    c_12(if^#(isEmpty(xs),
                              isZero(head(xs)),
                              y,
                              tail(xs),
                              cons(p(head(xs)), tail(xs)),
                              inc(y)))
              , 14: if^#(true(), b, y, xs, ys, x) -> c_13()
              , 15: if^#(false(), true(), y, xs, ys, x) -> c_14(sumList^#(xs, y))
              , 16: if^#(false(), false(), y, xs, ys, x) ->
                    c_15(sumList^#(ys, x))
              , 17: sum^#(xs) -> c_16(sumList^#(xs, 0()))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{17}                                                      [     inherited      ]
                |
                `->{13,16,15}                                            [       MAYBE        ]
                    |
                    `->{14}                                              [         NA         ]
             
             ->{11}                                                      [   YES(?,O(n^1))    ]
                |
                `->{12}                                                  [   YES(?,O(n^1))    ]
             
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{8}                                                       [   YES(?,O(n^1))    ]
                |
                `->{9}                                                   [    YES(?,O(1))     ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isEmpty^#(cons(x, xs)) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(isEmpty^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0] x1 + [0] x2 + [7]
                isEmpty^#(x1) = [1] x1 + [7]
                c_0() = [1]
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isEmpty^#(nil()) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isEmpty^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                isEmpty^#(x1) = [1] x1 + [7]
                c_1() = [1]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isZero^#(0()) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                isZero^#(x1) = [1] x1 + [7]
                c_2() = [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isZero^#(s(x)) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0] x1 + [7]
                isZero^#(x1) = [1] x1 + [7]
                c_3() = [1]
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {head^#(cons(x, xs)) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(head^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0] x1 + [0] x2 + [7]
                head^#(x1) = [1] x1 + [7]
                c_4() = [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {tail^#(cons(x, xs)) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0] x1 + [0] x2 + [7]
                tail^#(x1) = [1] x1 + [7]
                c_5() = [1]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {tail^#(nil()) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                tail^#(x1) = [1] x1 + [7]
                c_6() = [1]
           
           * Path {8}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {1}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6() = [0]
                p^#(x1) = [3] x1 + [0]
                c_7(x1) = [1] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(s(s(x))) -> c_7(p^#(s(x)))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                p^#(x1) = [1] x1 + [0]
                c_7(x1) = [1] x1 + [3]
           
           * Path {8}->{9}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {1}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [1] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(s(0())) -> c_8()}
               Weak Rules: {p^#(s(s(x))) -> c_7(p^#(s(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                s(x1) = [0] x1 + [3]
                p^#(x1) = [2] x1 + [2]
                c_7(x1) = [1] x1 + [0]
                c_8() = [1]
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                p^#(x1) = [1] x1 + [7]
                c_9() = [1]
           
           * Path {11}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {1},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [3] x1 + [0]
                c_10(x1) = [1] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {inc^#(s(x)) -> c_10(inc^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                inc^#(x1) = [2] x1 + [0]
                c_10(x1) = [1] x1 + [7]
           
           * Path {11}->{12}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {1},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {}, Uargs(if^#) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [1] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {inc^#(0()) -> c_11()}
               Weak Rules: {inc^#(s(x)) -> c_10(inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [0]
                inc^#(x1) = [2] x1 + [0]
                c_10(x1) = [1] x1 + [0]
                c_11() = [1]
           
           * Path {17}: inherited
             --------------------
             
             This path is subsumed by the proof of path {17}->{13,16,15}.
           
           * Path {17}->{13,16,15}: MAYBE
             ----------------------------
             
             The usable rules for this path are:
             
               {  isEmpty(cons(x, xs)) -> false()
                , isEmpty(nil()) -> true()
                , isZero(0()) -> true()
                , isZero(s(x)) -> false()
                , head(cons(x, xs)) -> x
                , tail(cons(x, xs)) -> xs
                , tail(nil()) -> nil()
                , p(s(s(x))) -> s(p(s(x)))
                , p(s(0())) -> 0()
                , p(0()) -> 0()
                , inc(s(x)) -> s(inc(x))
                , inc(0()) -> s(0())}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  sum^#(xs) -> c_16(sumList^#(xs, 0()))
                  , sumList^#(xs, y) ->
                    c_12(if^#(isEmpty(xs),
                              isZero(head(xs)),
                              y,
                              tail(xs),
                              cons(p(head(xs)), tail(xs)),
                              inc(y)))
                  , if^#(false(), false(), y, xs, ys, x) -> c_15(sumList^#(ys, x))
                  , if^#(false(), true(), y, xs, ys, x) -> c_14(sumList^#(xs, y))
                  , isEmpty(cons(x, xs)) -> false()
                  , isEmpty(nil()) -> true()
                  , isZero(0()) -> true()
                  , isZero(s(x)) -> false()
                  , head(cons(x, xs)) -> x
                  , tail(cons(x, xs)) -> xs
                  , tail(nil()) -> nil()
                  , p(s(s(x))) -> s(p(s(x)))
                  , p(s(0())) -> 0()
                  , p(0()) -> 0()
                  , inc(s(x)) -> s(inc(x))
                  , inc(0()) -> s(0())}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {17}->{13,16,15}->{14}: NA
             -------------------------------
             
             The usable rules for this path are:
             
               {  isEmpty(cons(x, xs)) -> false()
                , isEmpty(nil()) -> true()
                , isZero(0()) -> true()
                , isZero(s(x)) -> false()
                , head(cons(x, xs)) -> x
                , tail(cons(x, xs)) -> xs
                , tail(nil()) -> nil()
                , p(s(s(x))) -> s(p(s(x)))
                , p(s(0())) -> 0()
                , p(0()) -> 0()
                , inc(s(x)) -> s(inc(x))
                , inc(0()) -> s(0())}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {1, 2}, Uargs(isZero) = {1},
                 Uargs(s) = {1}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {1},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {}, Uargs(c_12) = {1},
                 Uargs(if^#) = {1, 2, 4, 5, 6}, Uargs(c_14) = {1},
                 Uargs(c_15) = {1}, Uargs(sum^#) = {}, Uargs(c_16) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [3] x1 + [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [1]
                false() = [0]
                nil() = [1]
                true() = [1]
                isZero(x1) = [1] x1 + [0]
                0() = [2]
                s(x1) = [1] x1 + [1]
                head(x1) = [3] x1 + [3]
                tail(x1) = [3] x1 + [3]
                p(x1) = [2] x1 + [0]
                inc(x1) = [2] x1 + [2]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [1] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [3] x1 + [3] x2 + [0] x3 + [3] x4 + [3] x5 + [3] x6 + [0]
                c_13() = [0]
                c_14(x1) = [1] x1 + [0]
                c_15(x1) = [1] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [1] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    4) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    5) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputSecret 06 TRS sumList

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputSecret 06 TRS sumList

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  isEmpty(cons(x, xs)) -> false()
     , isEmpty(nil()) -> true()
     , isZero(0()) -> true()
     , isZero(s(x)) -> false()
     , head(cons(x, xs)) -> x
     , tail(cons(x, xs)) -> xs
     , tail(nil()) -> nil()
     , p(s(s(x))) -> s(p(s(x)))
     , p(s(0())) -> 0()
     , p(0()) -> 0()
     , inc(s(x)) -> s(inc(x))
     , inc(0()) -> s(0())
     , sumList(xs, y) ->
       if(isEmpty(xs),
          isZero(head(xs)),
          y,
          tail(xs),
          cons(p(head(xs)), tail(xs)),
          inc(y))
     , if(true(), b, y, xs, ys, x) -> y
     , if(false(), true(), y, xs, ys, x) -> sumList(xs, y)
     , if(false(), false(), y, xs, ys, x) -> sumList(ys, x)
     , sum(xs) -> sumList(xs, 0())}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: isEmpty^#(cons(x, xs)) -> c_0()
              , 2: isEmpty^#(nil()) -> c_1()
              , 3: isZero^#(0()) -> c_2()
              , 4: isZero^#(s(x)) -> c_3()
              , 5: head^#(cons(x, xs)) -> c_4(x)
              , 6: tail^#(cons(x, xs)) -> c_5(xs)
              , 7: tail^#(nil()) -> c_6()
              , 8: p^#(s(s(x))) -> c_7(p^#(s(x)))
              , 9: p^#(s(0())) -> c_8()
              , 10: p^#(0()) -> c_9()
              , 11: inc^#(s(x)) -> c_10(inc^#(x))
              , 12: inc^#(0()) -> c_11()
              , 13: sumList^#(xs, y) ->
                    c_12(if^#(isEmpty(xs),
                              isZero(head(xs)),
                              y,
                              tail(xs),
                              cons(p(head(xs)), tail(xs)),
                              inc(y)))
              , 14: if^#(true(), b, y, xs, ys, x) -> c_13(y)
              , 15: if^#(false(), true(), y, xs, ys, x) -> c_14(sumList^#(xs, y))
              , 16: if^#(false(), false(), y, xs, ys, x) ->
                    c_15(sumList^#(ys, x))
              , 17: sum^#(xs) -> c_16(sumList^#(xs, 0()))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{17}                                                      [     inherited      ]
                |
                `->{13,16,15}                                            [       MAYBE        ]
                    |
                    `->{14}                                              [         NA         ]
             
             ->{11}                                                      [   YES(?,O(n^1))    ]
                |
                `->{12}                                                  [   YES(?,O(n^1))    ]
             
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{8}                                                       [   YES(?,O(n^1))    ]
                |
                `->{9}                                                   [   YES(?,O(n^1))    ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [   YES(?,O(n^2))    ]
             
             ->{5}                                                       [   YES(?,O(n^2))    ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {},
                 Uargs(inc^#) = {}, Uargs(c_10) = {}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isEmpty^#(cons(x, xs)) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(isEmpty^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                               [0 0]      [0 0]      [2]
                isEmpty^#(x1) = [2 0] x1 + [7]
                                [2 2]      [7]
                c_0() = [0]
                        [1]
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {},
                 Uargs(inc^#) = {}, Uargs(c_10) = {}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isEmpty^#(nil()) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isEmpty^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                isEmpty^#(x1) = [2 0] x1 + [7]
                                [2 2]      [7]
                c_1() = [0]
                        [1]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {},
                 Uargs(inc^#) = {}, Uargs(c_10) = {}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isZero^#(0()) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                isZero^#(x1) = [2 0] x1 + [7]
                               [2 2]      [7]
                c_2() = [0]
                        [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {},
                 Uargs(inc^#) = {}, Uargs(c_10) = {}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isZero^#(s(x)) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0 0] x1 + [2]
                        [0 0]      [2]
                isZero^#(x1) = [2 0] x1 + [7]
                               [2 2]      [7]
                c_3() = [0]
                        [1]
           
           * Path {5}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {},
                 Uargs(inc^#) = {}, Uargs(c_10) = {}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [1 1] x1 + [0 0] x2 + [0]
                               [0 1]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [3 3] x1 + [0]
                             [0 0]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {head^#(cons(x, xs)) -> c_4(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(head^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [1 2] x1 + [0 0] x2 + [2]
                               [0 0]      [0 0]      [2]
                head^#(x1) = [2 2] x1 + [7]
                             [2 0]      [7]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [1]
           
           * Path {6}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {},
                 Uargs(inc^#) = {}, Uargs(c_10) = {}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [1 1] x1 + [0 0] x2 + [0]
                               [0 1]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                tail^#(x1) = [3 3] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {tail^#(cons(x, xs)) -> c_5(xs)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(tail^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0] x1 + [1 2] x2 + [2]
                               [0 0]      [0 0]      [2]
                tail^#(x1) = [2 2] x1 + [7]
                             [2 0]      [7]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [1]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {},
                 Uargs(inc^#) = {}, Uargs(c_10) = {}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {tail^#(nil()) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                tail^#(x1) = [2 0] x1 + [7]
                             [2 2]      [7]
                c_6() = [0]
                        [1]
           
           * Path {8}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {1},
                 Uargs(inc^#) = {}, Uargs(c_10) = {}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [3 3]      [0]
                c_7(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(s(x))) -> c_7(p^#(s(x)))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [1]
                        [0 0]      [0]
                p^#(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {8}->{9}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {1},
                 Uargs(inc^#) = {}, Uargs(c_10) = {}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(0())) -> c_8()}
               Weak Rules: {p^#(s(s(x))) -> c_7(p^#(s(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [0]
                s(x1) = [0 2] x1 + [2]
                        [0 1]      [0]
                p^#(x1) = [2 0] x1 + [0]
                          [2 0]      [0]
                c_7(x1) = [1 0] x1 + [0]
                          [0 0]      [3]
                c_8() = [1]
                        [0]
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {},
                 Uargs(inc^#) = {}, Uargs(c_10) = {}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                p^#(x1) = [2 0] x1 + [7]
                          [2 2]      [7]
                c_9() = [0]
                        [1]
           
           * Path {11}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {},
                 Uargs(inc^#) = {}, Uargs(c_10) = {1}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [3 3] x1 + [0]
                            [3 3]      [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {inc^#(s(x)) -> c_10(inc^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                inc^#(x1) = [0 1] x1 + [1]
                            [0 0]      [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
           
           * Path {11}->{12}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {},
                 Uargs(inc^#) = {}, Uargs(c_10) = {1}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                false() = [0]
                          [0]
                nil() = [0]
                        [0]
                true() = [0]
                         [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {inc^#(0()) -> c_11()}
               Weak Rules: {inc^#(s(x)) -> c_10(inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 2] x1 + [1]
                        [0 0]      [3]
                inc^#(x1) = [1 2] x1 + [2]
                            [6 1]      [0]
                c_10(x1) = [1 0] x1 + [5]
                           [2 0]      [3]
                c_11() = [1]
                         [0]
           
           * Path {17}: inherited
             --------------------
             
             This path is subsumed by the proof of path {17}->{13,16,15}.
           
           * Path {17}->{13,16,15}: MAYBE
             ----------------------------
             
             The usable rules for this path are:
             
               {  isEmpty(cons(x, xs)) -> false()
                , isEmpty(nil()) -> true()
                , isZero(0()) -> true()
                , isZero(s(x)) -> false()
                , head(cons(x, xs)) -> x
                , tail(cons(x, xs)) -> xs
                , tail(nil()) -> nil()
                , p(s(s(x))) -> s(p(s(x)))
                , p(s(0())) -> 0()
                , p(0()) -> 0()
                , inc(s(x)) -> s(inc(x))
                , inc(0()) -> s(0())}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  sum^#(xs) -> c_16(sumList^#(xs, 0()))
                  , sumList^#(xs, y) ->
                    c_12(if^#(isEmpty(xs),
                              isZero(head(xs)),
                              y,
                              tail(xs),
                              cons(p(head(xs)), tail(xs)),
                              inc(y)))
                  , if^#(false(), false(), y, xs, ys, x) -> c_15(sumList^#(ys, x))
                  , if^#(false(), true(), y, xs, ys, x) -> c_14(sumList^#(xs, y))
                  , isEmpty(cons(x, xs)) -> false()
                  , isEmpty(nil()) -> true()
                  , isZero(0()) -> true()
                  , isZero(s(x)) -> false()
                  , head(cons(x, xs)) -> x
                  , tail(cons(x, xs)) -> xs
                  , tail(nil()) -> nil()
                  , p(s(s(x))) -> s(p(s(x)))
                  , p(s(0())) -> 0()
                  , p(0()) -> 0()
                  , inc(s(x)) -> s(inc(x))
                  , inc(0()) -> s(0())}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {17}->{13,16,15}->{14}: NA
             -------------------------------
             
             The usable rules for this path are:
             
               {  isEmpty(cons(x, xs)) -> false()
                , isEmpty(nil()) -> true()
                , isZero(0()) -> true()
                , isZero(s(x)) -> false()
                , head(cons(x, xs)) -> x
                , tail(cons(x, xs)) -> xs
                , tail(nil()) -> nil()
                , p(s(s(x))) -> s(p(s(x)))
                , p(s(0())) -> 0()
                , p(0()) -> 0()
                , inc(s(x)) -> s(inc(x))
                , inc(0()) -> s(0())}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {1}, Uargs(cons) = {1, 2}, Uargs(isZero) = {1},
                 Uargs(s) = {1}, Uargs(head) = {1}, Uargs(tail) = {1},
                 Uargs(p) = {1}, Uargs(inc) = {1}, Uargs(sumList) = {},
                 Uargs(if) = {}, Uargs(sum) = {}, Uargs(isEmpty^#) = {},
                 Uargs(isZero^#) = {}, Uargs(head^#) = {}, Uargs(c_4) = {},
                 Uargs(tail^#) = {}, Uargs(c_5) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {1, 2}, Uargs(c_12) = {1},
                 Uargs(if^#) = {1, 2, 3, 4, 5, 6}, Uargs(c_13) = {1},
                 Uargs(c_14) = {1}, Uargs(c_15) = {1}, Uargs(sum^#) = {},
                 Uargs(c_16) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [2 0] x1 + [0]
                              [3 3]      [3]
                cons(x1, x2) = [1 1] x1 + [1 3] x2 + [2]
                               [0 1]      [0 1]      [0]
                false() = [1]
                          [1]
                nil() = [2]
                        [0]
                true() = [1]
                         [1]
                isZero(x1) = [2 0] x1 + [0]
                             [1 3]      [3]
                0() = [3]
                      [1]
                s(x1) = [1 0] x1 + [2]
                        [0 1]      [0]
                head(x1) = [3 3] x1 + [3]
                           [3 3]      [3]
                tail(x1) = [2 0] x1 + [0]
                           [0 2]      [0]
                p(x1) = [2 0] x1 + [0]
                        [3 0]      [0]
                inc(x1) = [2 0] x1 + [0]
                          [2 2]      [0]
                sumList(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                if(x1, x2, x3, x4, x5, x6) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0 0] x6 + [0]
                                             [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isEmpty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1() = [0]
                        [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_11() = [0]
                         [0]
                sumList^#(x1, x2) = [3 0] x1 + [3 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_12(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                if^#(x1, x2, x3, x4, x5, x6) = [3 0] x1 + [3 0] x2 + [3 0] x3 + [3 0] x4 + [3 0] x5 + [3 3] x6 + [0]
                                               [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_13(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_15(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_16(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: isEmpty^#(cons(x, xs)) -> c_0()
              , 2: isEmpty^#(nil()) -> c_1()
              , 3: isZero^#(0()) -> c_2()
              , 4: isZero^#(s(x)) -> c_3()
              , 5: head^#(cons(x, xs)) -> c_4(x)
              , 6: tail^#(cons(x, xs)) -> c_5(xs)
              , 7: tail^#(nil()) -> c_6()
              , 8: p^#(s(s(x))) -> c_7(p^#(s(x)))
              , 9: p^#(s(0())) -> c_8()
              , 10: p^#(0()) -> c_9()
              , 11: inc^#(s(x)) -> c_10(inc^#(x))
              , 12: inc^#(0()) -> c_11()
              , 13: sumList^#(xs, y) ->
                    c_12(if^#(isEmpty(xs),
                              isZero(head(xs)),
                              y,
                              tail(xs),
                              cons(p(head(xs)), tail(xs)),
                              inc(y)))
              , 14: if^#(true(), b, y, xs, ys, x) -> c_13(y)
              , 15: if^#(false(), true(), y, xs, ys, x) -> c_14(sumList^#(xs, y))
              , 16: if^#(false(), false(), y, xs, ys, x) ->
                    c_15(sumList^#(ys, x))
              , 17: sum^#(xs) -> c_16(sumList^#(xs, 0()))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{17}                                                      [     inherited      ]
                |
                `->{13,16,15}                                            [       MAYBE        ]
                    |
                    `->{14}                                              [         NA         ]
             
             ->{11}                                                      [   YES(?,O(n^1))    ]
                |
                `->{12}                                                  [   YES(?,O(n^1))    ]
             
             ->{10}                                                      [    YES(?,O(1))     ]
             
             ->{8}                                                       [   YES(?,O(n^1))    ]
                |
                `->{9}                                                   [    YES(?,O(1))     ]
             
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [   YES(?,O(n^1))    ]
             
             ->{5}                                                       [   YES(?,O(n^1))    ]
             
             ->{4}                                                       [    YES(?,O(1))     ]
             
             ->{3}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [    YES(?,O(1))     ]
             
             ->{1}                                                       [    YES(?,O(1))     ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {},
                 Uargs(inc^#) = {}, Uargs(c_10) = {}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isEmpty^#(cons(x, xs)) -> c_0()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(isEmpty^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0] x1 + [0] x2 + [7]
                isEmpty^#(x1) = [1] x1 + [7]
                c_0() = [1]
           
           * Path {2}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {},
                 Uargs(inc^#) = {}, Uargs(c_10) = {}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isEmpty^#(nil()) -> c_1()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isEmpty^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                isEmpty^#(x1) = [1] x1 + [7]
                c_1() = [1]
           
           * Path {3}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {},
                 Uargs(inc^#) = {}, Uargs(c_10) = {}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isZero^#(0()) -> c_2()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                isZero^#(x1) = [1] x1 + [7]
                c_2() = [1]
           
           * Path {4}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {},
                 Uargs(inc^#) = {}, Uargs(c_10) = {}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isZero^#(s(x)) -> c_3()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [0] x1 + [7]
                isZero^#(x1) = [1] x1 + [7]
                c_3() = [1]
           
           * Path {5}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {},
                 Uargs(inc^#) = {}, Uargs(c_10) = {}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [1] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [3] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {head^#(cons(x, xs)) -> c_4(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(head^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [1] x1 + [0] x2 + [7]
                head^#(x1) = [1] x1 + [7]
                c_4(x1) = [1] x1 + [1]
           
           * Path {6}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {},
                 Uargs(inc^#) = {}, Uargs(c_10) = {}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [1] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                tail^#(x1) = [3] x1 + [0]
                c_5(x1) = [1] x1 + [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {tail^#(cons(x, xs)) -> c_5(xs)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(tail^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0] x1 + [1] x2 + [7]
                tail^#(x1) = [1] x1 + [7]
                c_5(x1) = [1] x1 + [1]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {},
                 Uargs(inc^#) = {}, Uargs(c_10) = {}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {tail^#(nil()) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                tail^#(x1) = [1] x1 + [7]
                c_6() = [1]
           
           * Path {8}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {1},
                 Uargs(inc^#) = {}, Uargs(c_10) = {}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                p^#(x1) = [3] x1 + [0]
                c_7(x1) = [1] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(s(x))) -> c_7(p^#(s(x)))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                p^#(x1) = [1] x1 + [0]
                c_7(x1) = [1] x1 + [3]
           
           * Path {8}->{9}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {1},
                 Uargs(inc^#) = {}, Uargs(c_10) = {}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [1] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(s(0())) -> c_8()}
               Weak Rules: {p^#(s(s(x))) -> c_7(p^#(s(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(p^#) = {}, Uargs(c_7) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                s(x1) = [0] x1 + [3]
                p^#(x1) = [2] x1 + [2]
                c_7(x1) = [1] x1 + [0]
                c_8() = [1]
           
           * Path {10}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {},
                 Uargs(inc^#) = {}, Uargs(c_10) = {}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {p^#(0()) -> c_9()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(p^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                p^#(x1) = [1] x1 + [7]
                c_9() = [1]
           
           * Path {11}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {},
                 Uargs(inc^#) = {}, Uargs(c_10) = {1}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [1] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [3] x1 + [0]
                c_10(x1) = [1] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {inc^#(s(x)) -> c_10(inc^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                inc^#(x1) = [2] x1 + [0]
                c_10(x1) = [1] x1 + [7]
           
           * Path {11}->{12}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {}, Uargs(cons) = {}, Uargs(isZero) = {},
                 Uargs(s) = {}, Uargs(head) = {}, Uargs(tail) = {}, Uargs(p) = {},
                 Uargs(inc) = {}, Uargs(sumList) = {}, Uargs(if) = {},
                 Uargs(sum) = {}, Uargs(isEmpty^#) = {}, Uargs(isZero^#) = {},
                 Uargs(head^#) = {}, Uargs(c_4) = {}, Uargs(tail^#) = {},
                 Uargs(c_5) = {}, Uargs(p^#) = {}, Uargs(c_7) = {},
                 Uargs(inc^#) = {}, Uargs(c_10) = {1}, Uargs(sumList^#) = {},
                 Uargs(c_12) = {}, Uargs(if^#) = {}, Uargs(c_13) = {},
                 Uargs(c_14) = {}, Uargs(c_15) = {}, Uargs(sum^#) = {},
                 Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                false() = [0]
                nil() = [0]
                true() = [0]
                isZero(x1) = [0] x1 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                p(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [1] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_12(x1) = [0] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                c_13(x1) = [0] x1 + [0]
                c_14(x1) = [0] x1 + [0]
                c_15(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {inc^#(0()) -> c_11()}
               Weak Rules: {inc^#(s(x)) -> c_10(inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [0]
                inc^#(x1) = [2] x1 + [0]
                c_10(x1) = [1] x1 + [0]
                c_11() = [1]
           
           * Path {17}: inherited
             --------------------
             
             This path is subsumed by the proof of path {17}->{13,16,15}.
           
           * Path {17}->{13,16,15}: MAYBE
             ----------------------------
             
             The usable rules for this path are:
             
               {  isEmpty(cons(x, xs)) -> false()
                , isEmpty(nil()) -> true()
                , isZero(0()) -> true()
                , isZero(s(x)) -> false()
                , head(cons(x, xs)) -> x
                , tail(cons(x, xs)) -> xs
                , tail(nil()) -> nil()
                , p(s(s(x))) -> s(p(s(x)))
                , p(s(0())) -> 0()
                , p(0()) -> 0()
                , inc(s(x)) -> s(inc(x))
                , inc(0()) -> s(0())}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  sum^#(xs) -> c_16(sumList^#(xs, 0()))
                  , sumList^#(xs, y) ->
                    c_12(if^#(isEmpty(xs),
                              isZero(head(xs)),
                              y,
                              tail(xs),
                              cons(p(head(xs)), tail(xs)),
                              inc(y)))
                  , if^#(false(), false(), y, xs, ys, x) -> c_15(sumList^#(ys, x))
                  , if^#(false(), true(), y, xs, ys, x) -> c_14(sumList^#(xs, y))
                  , isEmpty(cons(x, xs)) -> false()
                  , isEmpty(nil()) -> true()
                  , isZero(0()) -> true()
                  , isZero(s(x)) -> false()
                  , head(cons(x, xs)) -> x
                  , tail(cons(x, xs)) -> xs
                  , tail(nil()) -> nil()
                  , p(s(s(x))) -> s(p(s(x)))
                  , p(s(0())) -> 0()
                  , p(0()) -> 0()
                  , inc(s(x)) -> s(inc(x))
                  , inc(0()) -> s(0())}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {17}->{13,16,15}->{14}: NA
             -------------------------------
             
             The usable rules for this path are:
             
               {  isEmpty(cons(x, xs)) -> false()
                , isEmpty(nil()) -> true()
                , isZero(0()) -> true()
                , isZero(s(x)) -> false()
                , head(cons(x, xs)) -> x
                , tail(cons(x, xs)) -> xs
                , tail(nil()) -> nil()
                , p(s(s(x))) -> s(p(s(x)))
                , p(s(0())) -> 0()
                , p(0()) -> 0()
                , inc(s(x)) -> s(inc(x))
                , inc(0()) -> s(0())}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(isEmpty) = {1}, Uargs(cons) = {1, 2}, Uargs(isZero) = {1},
                 Uargs(s) = {1}, Uargs(head) = {1}, Uargs(tail) = {1},
                 Uargs(p) = {1}, Uargs(inc) = {1}, Uargs(sumList) = {},
                 Uargs(if) = {}, Uargs(sum) = {}, Uargs(isEmpty^#) = {},
                 Uargs(isZero^#) = {}, Uargs(head^#) = {}, Uargs(c_4) = {},
                 Uargs(tail^#) = {}, Uargs(c_5) = {}, Uargs(p^#) = {},
                 Uargs(c_7) = {}, Uargs(inc^#) = {}, Uargs(c_10) = {},
                 Uargs(sumList^#) = {1, 2}, Uargs(c_12) = {1},
                 Uargs(if^#) = {1, 2, 3, 4, 5, 6}, Uargs(c_13) = {1},
                 Uargs(c_14) = {1}, Uargs(c_15) = {1}, Uargs(sum^#) = {},
                 Uargs(c_16) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                isEmpty(x1) = [1] x1 + [3]
                cons(x1, x2) = [1] x1 + [1] x2 + [3]
                false() = [1]
                nil() = [3]
                true() = [1]
                isZero(x1) = [2] x1 + [0]
                0() = [2]
                s(x1) = [1] x1 + [2]
                head(x1) = [1] x1 + [3]
                tail(x1) = [1] x1 + [3]
                p(x1) = [2] x1 + [0]
                inc(x1) = [3] x1 + [0]
                sumList(x1, x2) = [0] x1 + [0] x2 + [0]
                if(x1, x2, x3, x4, x5, x6) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0] x6 + [0]
                sum(x1) = [0] x1 + [0]
                isEmpty^#(x1) = [0] x1 + [0]
                c_0() = [0]
                c_1() = [0]
                isZero^#(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                head^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                p^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                c_8() = [0]
                c_9() = [0]
                inc^#(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                c_11() = [0]
                sumList^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_12(x1) = [1] x1 + [0]
                if^#(x1, x2, x3, x4, x5, x6) = [3] x1 + [3] x2 + [3] x3 + [3] x4 + [3] x5 + [3] x6 + [0]
                c_13(x1) = [1] x1 + [0]
                c_14(x1) = [1] x1 + [0]
                c_15(x1) = [1] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_16(x1) = [1] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    4) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    5) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.