Tool CaT
stdout:
YES(?,O(n^1))
Problem:
a(b(c(x1))) -> b(x1)
c(b(b(x1))) -> a(x1)
c(x1) -> b(x1)
a(a(x1)) -> c(b(a(c(x1))))
Proof:
Bounds Processor:
bound: 1
enrichment: match
automaton:
final states: {3,2}
transitions:
b1(8) -> 9*
a1(6) -> 7*
a0(1) -> 2*
b0(1) -> 1*
c0(1) -> 3*
1 -> 8,6
7 -> 3*
9 -> 3*
problem:
QedTool IRC1
stdout:
YES(?,O(n^1))
Tool IRC2
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ a(b(c(x1))) -> b(x1)
, c(b(b(x1))) -> a(x1)
, c(x1) -> b(x1)
, a(a(x1)) -> c(b(a(c(x1))))}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ a(b(c(x1))) -> b(x1)
, c(b(b(x1))) -> a(x1)
, c(x1) -> b(x1)
, a(a(x1)) -> c(b(a(c(x1))))}
Proof Output:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ a_0(2) -> 1
, a_1(2) -> 1
, b_0(2) -> 2
, b_1(2) -> 1
, c_0(2) -> 1}Tool RC1
stdout:
YES(?,O(n^1))
Tool RC2
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ a(b(c(x1))) -> b(x1)
, c(b(b(x1))) -> a(x1)
, c(x1) -> b(x1)
, a(a(x1)) -> c(b(a(c(x1))))}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ a(b(c(x1))) -> b(x1)
, c(b(b(x1))) -> a(x1)
, c(x1) -> b(x1)
, a(a(x1)) -> c(b(a(c(x1))))}
Proof Output:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ a_0(2) -> 1
, a_1(2) -> 1
, b_0(2) -> 2
, b_1(2) -> 1
, c_0(2) -> 1}