Problem Secret 07 TRS aprove02

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputSecret 07 TRS aprove02

stdout:

MAYBE

Problem:
 plus(x,y) -> ifPlus(isZero(x),x,inc(y))
 ifPlus(true(),x,y) -> p(y)
 ifPlus(false(),x,y) -> plus(p(x),y)
 times(x,y) -> timesIter(0(),x,y,0())
 timesIter(i,x,y,z) -> ifTimes(ge(i,x),i,x,y,z)
 ifTimes(true(),i,x,y,z) -> z
 ifTimes(false(),i,x,y,z) -> timesIter(inc(i),x,y,plus(z,y))
 isZero(0()) -> true()
 isZero(s(0())) -> false()
 isZero(s(s(x))) -> isZero(s(x))
 inc(0()) -> s(0())
 inc(s(x)) -> s(inc(x))
 inc(x) -> s(x)
 p(0()) -> 0()
 p(s(x)) -> x
 p(s(s(x))) -> s(p(s(x)))
 ge(x,0()) -> true()
 ge(0(),s(y)) -> false()
 ge(s(x),s(y)) -> ge(x,y)
 f0(0(),y,x) -> f1(x,y,x)
 f1(x,y,z) -> f2(x,y,z)
 f2(x,1(),z) -> f0(x,z,z)
 f0(x,y,z) -> d()
 f1(x,y,z) -> c()

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputSecret 07 TRS aprove02

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputSecret 07 TRS aprove02

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  plus(x, y) -> ifPlus(isZero(x), x, inc(y))
     , ifPlus(true(), x, y) -> p(y)
     , ifPlus(false(), x, y) -> plus(p(x), y)
     , times(x, y) -> timesIter(0(), x, y, 0())
     , timesIter(i, x, y, z) -> ifTimes(ge(i, x), i, x, y, z)
     , ifTimes(true(), i, x, y, z) -> z
     , ifTimes(false(), i, x, y, z) ->
       timesIter(inc(i), x, y, plus(z, y))
     , isZero(0()) -> true()
     , isZero(s(0())) -> false()
     , isZero(s(s(x))) -> isZero(s(x))
     , inc(0()) -> s(0())
     , inc(s(x)) -> s(inc(x))
     , inc(x) -> s(x)
     , p(0()) -> 0()
     , p(s(x)) -> x
     , p(s(s(x))) -> s(p(s(x)))
     , ge(x, 0()) -> true()
     , ge(0(), s(y)) -> false()
     , ge(s(x), s(y)) -> ge(x, y)
     , f0(0(), y, x) -> f1(x, y, x)
     , f1(x, y, z) -> f2(x, y, z)
     , f2(x, 1(), z) -> f0(x, z, z)
     , f0(x, y, z) -> d()
     , f1(x, y, z) -> c()}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(x, y) -> c_0(ifPlus^#(isZero(x), x, inc(y)))
              , 2: ifPlus^#(true(), x, y) -> c_1(p^#(y))
              , 3: ifPlus^#(false(), x, y) -> c_2(plus^#(p(x), y))
              , 4: times^#(x, y) -> c_3(timesIter^#(0(), x, y, 0()))
              , 5: timesIter^#(i, x, y, z) ->
                   c_4(ifTimes^#(ge(i, x), i, x, y, z))
              , 6: ifTimes^#(true(), i, x, y, z) -> c_5()
              , 7: ifTimes^#(false(), i, x, y, z) ->
                   c_6(timesIter^#(inc(i), x, y, plus(z, y)))
              , 8: isZero^#(0()) -> c_7()
              , 9: isZero^#(s(0())) -> c_8()
              , 10: isZero^#(s(s(x))) -> c_9(isZero^#(s(x)))
              , 11: inc^#(0()) -> c_10()
              , 12: inc^#(s(x)) -> c_11(inc^#(x))
              , 13: inc^#(x) -> c_12()
              , 14: p^#(0()) -> c_13()
              , 15: p^#(s(x)) -> c_14()
              , 16: p^#(s(s(x))) -> c_15(p^#(s(x)))
              , 17: ge^#(x, 0()) -> c_16()
              , 18: ge^#(0(), s(y)) -> c_17()
              , 19: ge^#(s(x), s(y)) -> c_18(ge^#(x, y))
              , 20: f0^#(0(), y, x) -> c_19(f1^#(x, y, x))
              , 21: f1^#(x, y, z) -> c_20(f2^#(x, y, z))
              , 22: f2^#(x, 1(), z) -> c_21(f0^#(x, z, z))
              , 23: f0^#(x, y, z) -> c_22()
              , 24: f1^#(x, y, z) -> c_23()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{20,22,21}                                                [       MAYBE        ]
                |
                |->{23}                                                  [         NA         ]
                |
                `->{24}                                                  [         NA         ]
             
             ->{19}                                                      [   YES(?,O(n^1))    ]
                |
                |->{17}                                                  [   YES(?,O(n^3))    ]
                |
                `->{18}                                                  [   YES(?,O(n^2))    ]
             
             ->{12}                                                      [   YES(?,O(n^2))    ]
                |
                |->{11}                                                  [   YES(?,O(n^2))    ]
                |
                `->{13}                                                  [   YES(?,O(n^2))    ]
             
             ->{10}                                                      [         NA         ]
                |
                `->{9}                                                   [         NA         ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                `->{5,7}                                                 [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{1,3}                                                     [         NA         ]
                |
                `->{2}                                                   [         NA         ]
                    |
                    |->{14}                                              [         NA         ]
                    |
                    |->{15}                                              [         NA         ]
                    |
                    `->{16}                                              [         NA         ]
                        |
                        `->{15}                                          [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,3}: NA
             --------------
             
             The usable rules for this path are:
             
               {  isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,3}->{2}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {1}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {1}, Uargs(c_0) = {1}, Uargs(ifPlus^#) = {1, 3},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 1 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                inc(x1) = [2 2 2] x1 + [3]
                          [0 1 3]      [1]
                          [0 0 1]      [2]
                true() = [0]
                         [0]
                         [0]
                p(x1) = [3 3 2] x1 + [2]
                        [0 3 3]      [1]
                        [0 0 2]      [0]
                false() = [1]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [2]
                      [1]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 2 2] x1 + [2]
                        [0 1 3]      [1]
                        [0 0 1]      [2]
                f0(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                1() = [0]
                      [0]
                      [0]
                d() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [3 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                ifPlus^#(x1, x2, x3) = [3 0 0] x1 + [3 3 3] x2 + [3 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 3] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [3 3 3] x1 + [0]
                          [3 3 3]      [0]
                          [1 1 1]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                inc^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                c_15(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_16() = [0]
                         [0]
                         [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f0^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_19(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f1^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_20(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f2^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_21(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_22() = [0]
                         [0]
                         [0]
                c_23() = [0]
                         [0]
                         [0]
             Complexity induced by the adequate RMI: YES(?,O(n^3))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,3}->{2}->{14}: NA
             -------------------------
             
             The usable rules for this path are:
             
               {  isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {1}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {1}, Uargs(c_0) = {1}, Uargs(ifPlus^#) = {1, 3},
                 Uargs(c_1) = {1}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 1 0] x1 + [0]
                             [0 1 0]      [0]
                             [0 3 3]      [2]
                inc(x1) = [1 0 1] x1 + [1]
                          [3 1 2]      [0]
                          [0 0 1]      [1]
                true() = [0]
                         [1]
                         [0]
                p(x1) = [2 0 2] x1 + [0]
                        [0 2 0]      [0]
                        [0 0 1]      [0]
                false() = [1]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [2]
                      [1]
                      [1]
                ifTimes(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 1 1]      [0]
                        [0 0 1]      [1]
                f0(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                1() = [0]
                      [0]
                      [0]
                d() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [3 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                ifPlus^#(x1, x2, x3) = [3 0 0] x1 + [0 0 0] x2 + [3 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                inc^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                c_15(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_16() = [0]
                         [0]
                         [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f0^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_19(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f1^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_20(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f2^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_21(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_22() = [0]
                         [0]
                         [0]
                c_23() = [0]
                         [0]
                         [0]
             Complexity induced by the adequate RMI: YES(?,O(n^3))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,3}->{2}->{15}: NA
             -------------------------
             
             The usable rules for this path are:
             
               {  isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {1}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {1}, Uargs(c_0) = {1}, Uargs(ifPlus^#) = {1, 3},
                 Uargs(c_1) = {1}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 1 0] x1 + [0]
                             [0 1 0]      [0]
                             [0 3 3]      [2]
                inc(x1) = [1 0 1] x1 + [1]
                          [3 1 2]      [0]
                          [0 0 1]      [1]
                true() = [0]
                         [1]
                         [0]
                p(x1) = [2 0 2] x1 + [0]
                        [0 2 0]      [0]
                        [0 0 1]      [0]
                false() = [1]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [2]
                      [1]
                      [1]
                ifTimes(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 1 1]      [0]
                        [0 0 1]      [1]
                f0(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                1() = [0]
                      [0]
                      [0]
                d() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [3 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                ifPlus^#(x1, x2, x3) = [3 0 0] x1 + [0 0 0] x2 + [3 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                inc^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                c_15(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_16() = [0]
                         [0]
                         [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f0^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_19(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f1^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_20(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f2^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_21(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_22() = [0]
                         [0]
                         [0]
                c_23() = [0]
                         [0]
                         [0]
             Complexity induced by the adequate RMI: YES(?,O(n^3))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,3}->{2}->{16}: NA
             -------------------------
             
             The usable rules for this path are:
             
               {  isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {1}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {1}, Uargs(c_0) = {1}, Uargs(ifPlus^#) = {1, 3},
                 Uargs(c_1) = {1}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {1}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 2] x1 + [0]
                             [0 1 0]      [0]
                             [0 1 0]      [0]
                inc(x1) = [2 0 1] x1 + [2]
                          [0 1 2]      [0]
                          [0 0 1]      [2]
                true() = [1]
                         [0]
                         [0]
                p(x1) = [1 0 2] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 2]      [0]
                false() = [1]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [2]
                ifTimes(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 1]      [2]
                f0(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                1() = [0]
                      [0]
                      [0]
                d() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [3 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                ifPlus^#(x1, x2, x3) = [3 0 0] x1 + [0 0 0] x2 + [3 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [3 3 3]      [0]
                          [3 3 3]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                inc^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                c_15(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_16() = [0]
                         [0]
                         [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f0^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_19(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f1^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_20(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f2^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_21(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_22() = [0]
                         [0]
                         [0]
                c_23() = [0]
                         [0]
                         [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,3}->{2}->{16}->{15}: NA
             -------------------------------
             
             The usable rules for this path are:
             
               {  isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {1}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {1}, Uargs(c_0) = {1}, Uargs(ifPlus^#) = {1, 3},
                 Uargs(c_1) = {1}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {1}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 1] x1 + [2]
                             [0 1 0]      [0]
                             [0 1 0]      [0]
                inc(x1) = [2 0 2] x1 + [1]
                          [0 2 0]      [2]
                          [0 0 2]      [3]
                true() = [1]
                         [0]
                         [0]
                p(x1) = [2 2 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 1]      [2]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [2]
                      [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 1 0]      [2]
                        [0 0 1]      [1]
                f0(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                1() = [0]
                      [0]
                      [0]
                d() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [3 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                ifPlus^#(x1, x2, x3) = [3 0 0] x1 + [0 0 0] x2 + [3 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                inc^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                c_15(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_16() = [0]
                         [0]
                         [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f0^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_19(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f1^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_20(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f2^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_21(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_22() = [0]
                         [0]
                         [0]
                c_23() = [0]
                         [0]
                         [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{5,7}->{6}.
           
           * Path {4}->{5,7}: inherited
             --------------------------
             
             This path is subsumed by the proof of path {4}->{5,7}->{6}.
           
           * Path {4}->{5,7}->{6}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  plus(x, y) -> ifPlus(isZero(x), x, inc(y))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)
                , ifPlus(true(), x, y) -> p(y)
                , ifPlus(false(), x, y) -> plus(p(x), y)
                , isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                inc(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f0(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                1() = [0]
                      [0]
                      [0]
                d() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                inc^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                c_15(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_16() = [0]
                         [0]
                         [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f0^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_19(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f1^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_20(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f2^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_21(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_22() = [0]
                         [0]
                         [0]
                c_23() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isZero^#(0()) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                isZero^#(x1) = [0 2 0] x1 + [7]
                               [2 2 0]      [3]
                               [2 2 2]      [3]
                c_7() = [0]
                        [1]
                        [1]
           
           * Path {10}: NA
             -------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {1}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                inc(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f0(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                1() = [0]
                      [0]
                      [0]
                d() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [3 3 3]      [0]
                               [3 3 3]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                inc^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                c_15(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_16() = [0]
                         [0]
                         [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f0^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_19(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f1^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_20(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f2^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_21(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_22() = [0]
                         [0]
                         [0]
                c_23() = [0]
                         [0]
                         [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {10}->{9}: NA
             ------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {1}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                inc(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f0(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                1() = [0]
                      [0]
                      [0]
                d() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                inc^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                c_15(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_16() = [0]
                         [0]
                         [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f0^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_19(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f1^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_20(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f2^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_21(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_22() = [0]
                         [0]
                         [0]
                c_23() = [0]
                         [0]
                         [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {12}: YES(?,O(n^2))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {1}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                inc(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                f0(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                1() = [0]
                      [0]
                      [0]
                d() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                inc^#(x1) = [0 0 0] x1 + [0]
                            [3 3 3]      [0]
                            [3 3 3]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                c_15(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_16() = [0]
                         [0]
                         [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f0^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_19(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f1^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_20(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f2^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_21(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_22() = [0]
                         [0]
                         [0]
                c_23() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {inc^#(s(x)) -> c_11(inc^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(inc^#) = {}, Uargs(c_11) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 2] x1 + [2]
                        [0 1 2]      [2]
                        [0 0 0]      [0]
                inc^#(x1) = [0 1 0] x1 + [2]
                            [6 0 0]      [0]
                            [2 3 0]      [2]
                c_11(x1) = [1 0 0] x1 + [1]
                           [2 0 2]      [0]
                           [0 0 0]      [0]
           
           * Path {12}->{11}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {1}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                inc(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f0(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                1() = [0]
                      [0]
                      [0]
                d() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                inc^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                c_15(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_16() = [0]
                         [0]
                         [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f0^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_19(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f1^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_20(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f2^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_21(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_22() = [0]
                         [0]
                         [0]
                c_23() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {inc^#(0()) -> c_10()}
               Weak Rules: {inc^#(s(x)) -> c_11(inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(inc^#) = {}, Uargs(c_11) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 1 0] x1 + [0]
                        [0 1 1]      [1]
                        [0 0 0]      [0]
                inc^#(x1) = [2 2 2] x1 + [0]
                            [0 6 0]      [0]
                            [0 0 2]      [0]
                c_10() = [1]
                         [0]
                         [0]
                c_11(x1) = [1 0 0] x1 + [2]
                           [0 0 0]      [3]
                           [0 0 0]      [0]
           
           * Path {12}->{13}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {1}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                inc(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f0(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                1() = [0]
                      [0]
                      [0]
                d() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                inc^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                c_15(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_16() = [0]
                         [0]
                         [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f0^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_19(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f1^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_20(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f2^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_21(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_22() = [0]
                         [0]
                         [0]
                c_23() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {inc^#(x) -> c_12()}
               Weak Rules: {inc^#(s(x)) -> c_11(inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(inc^#) = {}, Uargs(c_11) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 2] x1 + [2]
                        [0 1 2]      [0]
                        [0 0 0]      [3]
                inc^#(x1) = [0 1 2] x1 + [2]
                            [2 2 2]      [0]
                            [3 3 1]      [0]
                c_11(x1) = [1 0 0] x1 + [5]
                           [2 0 0]      [3]
                           [3 1 0]      [0]
                c_12() = [1]
                         [0]
                         [0]
           
           * Path {19}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {1}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                inc(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f0(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                1() = [0]
                      [0]
                      [0]
                d() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                inc^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                c_15(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [3 3 3]      [3 3 3]      [0]
                               [3 3 3]      [3 3 3]      [0]
                c_16() = [0]
                         [0]
                         [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                f0^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_19(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f1^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_20(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f2^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_21(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_22() = [0]
                         [0]
                         [0]
                c_23() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(s(x), s(y)) -> c_18(ge^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_18) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [2]
                        [0 0 2]      [2]
                        [0 0 0]      [0]
                ge^#(x1, x2) = [1 0 0] x1 + [5 0 0] x2 + [0]
                               [2 2 0]      [0 2 0]      [0]
                               [4 0 0]      [0 2 0]      [0]
                c_18(x1) = [1 0 0] x1 + [7]
                           [0 0 0]      [7]
                           [0 0 0]      [7]
           
           * Path {19}->{17}: YES(?,O(n^3))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {1}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                inc(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f0(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                1() = [0]
                      [0]
                      [0]
                d() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                inc^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                c_15(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_16() = [0]
                         [0]
                         [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                f0^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_19(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f1^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_20(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f2^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_21(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_22() = [0]
                         [0]
                         [0]
                c_23() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(x, 0()) -> c_16()}
               Weak Rules: {ge^#(s(x), s(y)) -> c_18(ge^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_18) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 2 0] x1 + [2]
                        [0 1 3]      [2]
                        [0 0 1]      [2]
                ge^#(x1, x2) = [0 0 0] x1 + [0 2 2] x2 + [0]
                               [0 0 2]      [2 2 0]      [0]
                               [0 0 0]      [0 2 2]      [0]
                c_16() = [1]
                         [0]
                         [0]
                c_18(x1) = [1 0 0] x1 + [3]
                           [0 0 0]      [0]
                           [0 0 0]      [7]
           
           * Path {19}->{18}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {1}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                inc(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f0(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                1() = [0]
                      [0]
                      [0]
                d() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                inc^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                c_15(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_16() = [0]
                         [0]
                         [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                f0^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_19(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f1^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_20(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f2^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_21(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_22() = [0]
                         [0]
                         [0]
                c_23() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(0(), s(y)) -> c_17()}
               Weak Rules: {ge^#(s(x), s(y)) -> c_18(ge^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_18) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [2]
                      [0]
                s(x1) = [1 1 2] x1 + [0]
                        [0 1 0]      [2]
                        [0 0 0]      [0]
                ge^#(x1, x2) = [0 2 0] x1 + [1 0 2] x2 + [0]
                               [7 1 0]      [4 0 0]      [0]
                               [4 2 0]      [4 0 0]      [0]
                c_17() = [1]
                         [0]
                         [0]
                c_18(x1) = [1 0 0] x1 + [3]
                           [2 0 0]      [2]
                           [0 0 0]      [2]
           
           * Path {20,22,21}: MAYBE
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {1},
                 Uargs(f1^#) = {}, Uargs(c_20) = {1}, Uargs(f2^#) = {},
                 Uargs(c_21) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                inc(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f0(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                1() = [0]
                      [0]
                      [0]
                d() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                inc^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                c_15(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_16() = [0]
                         [0]
                         [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f0^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [3 3 3] x3 + [0]
                                   [3 3 3]      [3 3 3]      [3 3 3]      [0]
                                   [3 3 3]      [3 3 3]      [3 3 3]      [0]
                c_19(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                f1^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [3 3 3] x3 + [0]
                                   [3 3 3]      [3 3 3]      [3 3 3]      [0]
                                   [3 3 3]      [3 3 3]      [3 3 3]      [0]
                c_20(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                f2^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [3 3 3] x3 + [0]
                                   [3 3 3]      [3 3 3]      [3 3 3]      [0]
                                   [3 3 3]      [3 3 3]      [3 3 3]      [0]
                c_21(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                c_22() = [0]
                         [0]
                         [0]
                c_23() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  f0^#(0(), y, x) -> c_19(f1^#(x, y, x))
                  , f2^#(x, 1(), z) -> c_21(f0^#(x, z, z))
                  , f1^#(x, y, z) -> c_20(f2^#(x, y, z))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {20,22,21}->{23}: NA
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {1},
                 Uargs(f1^#) = {}, Uargs(c_20) = {1}, Uargs(f2^#) = {},
                 Uargs(c_21) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                inc(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f0(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                1() = [0]
                      [0]
                      [0]
                d() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                inc^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                c_15(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_16() = [0]
                         [0]
                         [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f0^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_19(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                f1^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_20(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                f2^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_21(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                c_22() = [0]
                         [0]
                         [0]
                c_23() = [0]
                         [0]
                         [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {20,22,21}->{24}: NA
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {1},
                 Uargs(f1^#) = {}, Uargs(c_20) = {1}, Uargs(f2^#) = {},
                 Uargs(c_21) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isZero(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                inc(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                p(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                false() = [0]
                          [0]
                          [0]
                times(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                            [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                ge(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f0(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f1(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                f2(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0 0 0]      [0]
                1() = [0]
                      [0]
                      [0]
                d() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                p^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                times^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                              [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0 0 0] x5 + [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                                [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                isZero^#(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                inc^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_10() = [0]
                         [0]
                         [0]
                c_11(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                c_12() = [0]
                         [0]
                         [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                c_15(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                ge^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_16() = [0]
                         [0]
                         [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f0^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_19(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                f1^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_20(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                f2^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_21(x1) = [1 0 0] x1 + [0]
                           [0 1 0]      [0]
                           [0 0 1]      [0]
                c_22() = [0]
                         [0]
                         [0]
                c_23() = [0]
                         [0]
                         [0]
             
             We have not generated a proof for the resulting sub-problem.
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(x, y) -> c_0(ifPlus^#(isZero(x), x, inc(y)))
              , 2: ifPlus^#(true(), x, y) -> c_1(p^#(y))
              , 3: ifPlus^#(false(), x, y) -> c_2(plus^#(p(x), y))
              , 4: times^#(x, y) -> c_3(timesIter^#(0(), x, y, 0()))
              , 5: timesIter^#(i, x, y, z) ->
                   c_4(ifTimes^#(ge(i, x), i, x, y, z))
              , 6: ifTimes^#(true(), i, x, y, z) -> c_5()
              , 7: ifTimes^#(false(), i, x, y, z) ->
                   c_6(timesIter^#(inc(i), x, y, plus(z, y)))
              , 8: isZero^#(0()) -> c_7()
              , 9: isZero^#(s(0())) -> c_8()
              , 10: isZero^#(s(s(x))) -> c_9(isZero^#(s(x)))
              , 11: inc^#(0()) -> c_10()
              , 12: inc^#(s(x)) -> c_11(inc^#(x))
              , 13: inc^#(x) -> c_12()
              , 14: p^#(0()) -> c_13()
              , 15: p^#(s(x)) -> c_14()
              , 16: p^#(s(s(x))) -> c_15(p^#(s(x)))
              , 17: ge^#(x, 0()) -> c_16()
              , 18: ge^#(0(), s(y)) -> c_17()
              , 19: ge^#(s(x), s(y)) -> c_18(ge^#(x, y))
              , 20: f0^#(0(), y, x) -> c_19(f1^#(x, y, x))
              , 21: f1^#(x, y, z) -> c_20(f2^#(x, y, z))
              , 22: f2^#(x, 1(), z) -> c_21(f0^#(x, z, z))
              , 23: f0^#(x, y, z) -> c_22()
              , 24: f1^#(x, y, z) -> c_23()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{20,22,21}                                                [       MAYBE        ]
                |
                |->{23}                                                  [         NA         ]
                |
                `->{24}                                                  [         NA         ]
             
             ->{19}                                                      [   YES(?,O(n^2))    ]
                |
                |->{17}                                                  [   YES(?,O(n^2))    ]
                |
                `->{18}                                                  [   YES(?,O(n^2))    ]
             
             ->{12}                                                      [   YES(?,O(n^1))    ]
                |
                |->{11}                                                  [   YES(?,O(n^1))    ]
                |
                `->{13}                                                  [   YES(?,O(n^1))    ]
             
             ->{10}                                                      [   YES(?,O(n^1))    ]
                |
                `->{9}                                                   [         NA         ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                `->{5,7}                                                 [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{1,3}                                                     [         NA         ]
                |
                `->{2}                                                   [         NA         ]
                    |
                    |->{14}                                              [         NA         ]
                    |
                    |->{15}                                              [         NA         ]
                    |
                    `->{16}                                              [         NA         ]
                        |
                        `->{15}                                          [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,3}: NA
             --------------
             
             The usable rules for this path are:
             
               {  isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,3}->{2}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {1}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {1}, Uargs(c_0) = {1}, Uargs(ifPlus^#) = {1, 3},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                isZero(x1) = [0 1] x1 + [0]
                             [0 0]      [0]
                inc(x1) = [2 2] x1 + [1]
                          [0 2]      [2]
                true() = [0]
                         [0]
                p(x1) = [1 2] x1 + [0]
                        [0 1]      [3]
                false() = [1]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [1]
                ifTimes(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                f0(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f2(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                1() = [0]
                      [0]
                d() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                ifPlus^#(x1, x2, x3) = [3 0] x1 + [3 3] x2 + [3 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 1] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [3 3] x1 + [0]
                          [3 3]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_16() = [0]
                         [0]
                c_17() = [0]
                         [0]
                c_18(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f0^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_19(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f1^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_20(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f2^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_21(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_22() = [0]
                         [0]
                c_23() = [0]
                         [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,3}->{2}->{14}: NA
             -------------------------
             
             The usable rules for this path are:
             
               {  isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {1}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {1}, Uargs(c_0) = {1}, Uargs(ifPlus^#) = {1, 3},
                 Uargs(c_1) = {1}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                isZero(x1) = [2 0] x1 + [2]
                             [0 0]      [0]
                inc(x1) = [3 1] x1 + [3]
                          [0 3]      [1]
                true() = [1]
                         [0]
                p(x1) = [2 1] x1 + [0]
                        [0 1]      [0]
                false() = [1]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                0() = [1]
                      [1]
                ifTimes(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [1 1] x1 + [1]
                        [0 1]      [0]
                f0(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f2(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                1() = [0]
                      [0]
                d() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                ifPlus^#(x1, x2, x3) = [3 0] x1 + [0 0] x2 + [3 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_16() = [0]
                         [0]
                c_17() = [0]
                         [0]
                c_18(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f0^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_19(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f1^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_20(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f2^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_21(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_22() = [0]
                         [0]
                c_23() = [0]
                         [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,3}->{2}->{15}: NA
             -------------------------
             
             The usable rules for this path are:
             
               {  isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {1}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {1}, Uargs(c_0) = {1}, Uargs(ifPlus^#) = {1, 3},
                 Uargs(c_1) = {1}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                isZero(x1) = [2 0] x1 + [2]
                             [0 0]      [0]
                inc(x1) = [3 1] x1 + [3]
                          [0 3]      [1]
                true() = [1]
                         [0]
                p(x1) = [2 1] x1 + [0]
                        [0 1]      [0]
                false() = [1]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                0() = [1]
                      [1]
                ifTimes(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [1 1] x1 + [1]
                        [0 1]      [0]
                f0(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f2(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                1() = [0]
                      [0]
                d() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                ifPlus^#(x1, x2, x3) = [3 0] x1 + [0 0] x2 + [3 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_16() = [0]
                         [0]
                c_17() = [0]
                         [0]
                c_18(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f0^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_19(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f1^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_20(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f2^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_21(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_22() = [0]
                         [0]
                c_23() = [0]
                         [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,3}->{2}->{16}: NA
             -------------------------
             
             The usable rules for this path are:
             
               {  isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {1}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {1}, Uargs(c_0) = {1}, Uargs(ifPlus^#) = {1, 3},
                 Uargs(c_1) = {1}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {1}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                isZero(x1) = [2 0] x1 + [0]
                             [2 0]      [0]
                inc(x1) = [2 0] x1 + [3]
                          [0 2]      [0]
                true() = [1]
                         [0]
                p(x1) = [2 0] x1 + [0]
                        [0 1]      [0]
                false() = [1]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                0() = [2]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 1]      [0]
                f0(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f2(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                1() = [0]
                      [0]
                d() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                ifPlus^#(x1, x2, x3) = [3 0] x1 + [0 0] x2 + [3 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [3 3]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                c_15(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_16() = [0]
                         [0]
                c_17() = [0]
                         [0]
                c_18(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f0^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_19(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f1^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_20(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f2^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_21(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_22() = [0]
                         [0]
                c_23() = [0]
                         [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,3}->{2}->{16}->{15}: NA
             -------------------------------
             
             The usable rules for this path are:
             
               {  isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {1}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {1}, Uargs(c_0) = {1}, Uargs(ifPlus^#) = {1, 3},
                 Uargs(c_1) = {1}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {1}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                isZero(x1) = [2 0] x1 + [0]
                             [2 0]      [0]
                inc(x1) = [2 0] x1 + [3]
                          [0 2]      [0]
                true() = [1]
                         [0]
                p(x1) = [2 0] x1 + [0]
                        [0 1]      [0]
                false() = [1]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                0() = [2]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [1 0] x1 + [2]
                        [0 1]      [0]
                f0(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f2(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                1() = [0]
                      [0]
                d() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [3 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                ifPlus^#(x1, x2, x3) = [3 0] x1 + [0 0] x2 + [3 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                c_15(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_16() = [0]
                         [0]
                c_17() = [0]
                         [0]
                c_18(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f0^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_19(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f1^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_20(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f2^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_21(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_22() = [0]
                         [0]
                c_23() = [0]
                         [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{5,7}->{6}.
           
           * Path {4}->{5,7}: inherited
             --------------------------
             
             This path is subsumed by the proof of path {4}->{5,7}->{6}.
           
           * Path {4}->{5,7}->{6}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  plus(x, y) -> ifPlus(isZero(x), x, inc(y))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)
                , ifPlus(true(), x, y) -> p(y)
                , ifPlus(false(), x, y) -> plus(p(x), y)
                , isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                true() = [0]
                         [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                false() = [0]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                f0(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f2(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                1() = [0]
                      [0]
                d() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_16() = [0]
                         [0]
                c_17() = [0]
                         [0]
                c_18(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f0^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_19(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f1^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_20(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f2^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_21(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_22() = [0]
                         [0]
                c_23() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isZero^#(0()) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                isZero^#(x1) = [2 0] x1 + [7]
                               [2 2]      [7]
                c_7() = [0]
                        [1]
           
           * Path {10}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {1}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                true() = [0]
                         [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                false() = [0]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                f0(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f2(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                1() = [0]
                      [0]
                d() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [3 3]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_16() = [0]
                         [0]
                c_17() = [0]
                         [0]
                c_18(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f0^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_19(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f1^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_20(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f2^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_21(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_22() = [0]
                         [0]
                c_23() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isZero^#(s(s(x))) -> c_9(isZero^#(s(x)))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isZero^#) = {}, Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [1]
                        [0 0]      [0]
                isZero^#(x1) = [1 0] x1 + [0]
                               [0 0]      [0]
                c_9(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {10}->{9}: NA
             ------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {1}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                true() = [0]
                         [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                false() = [0]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                f0(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f2(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                1() = [0]
                      [0]
                d() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_16() = [0]
                         [0]
                c_17() = [0]
                         [0]
                c_18(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f0^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_19(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f1^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_20(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f2^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_21(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_22() = [0]
                         [0]
                c_23() = [0]
                         [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {12}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {1}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                true() = [0]
                         [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                false() = [0]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                f0(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f2(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                1() = [0]
                      [0]
                d() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                inc^#(x1) = [3 3] x1 + [0]
                            [3 3]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_16() = [0]
                         [0]
                c_17() = [0]
                         [0]
                c_18(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f0^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_19(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f1^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_20(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f2^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_21(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_22() = [0]
                         [0]
                c_23() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {inc^#(s(x)) -> c_11(inc^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(inc^#) = {}, Uargs(c_11) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                inc^#(x1) = [0 1] x1 + [1]
                            [0 0]      [0]
                c_11(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
           
           * Path {12}->{11}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {1}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                true() = [0]
                         [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                false() = [0]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                f0(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f2(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                1() = [0]
                      [0]
                d() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_16() = [0]
                         [0]
                c_17() = [0]
                         [0]
                c_18(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f0^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_19(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f1^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_20(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f2^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_21(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_22() = [0]
                         [0]
                c_23() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {inc^#(0()) -> c_10()}
               Weak Rules: {inc^#(s(x)) -> c_11(inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(inc^#) = {}, Uargs(c_11) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 2] x1 + [1]
                        [0 0]      [3]
                inc^#(x1) = [1 2] x1 + [2]
                            [6 1]      [0]
                c_10() = [1]
                         [0]
                c_11(x1) = [1 0] x1 + [5]
                           [2 0]      [3]
           
           * Path {12}->{13}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {1}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                true() = [0]
                         [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                false() = [0]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                f0(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f2(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                1() = [0]
                      [0]
                d() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_16() = [0]
                         [0]
                c_17() = [0]
                         [0]
                c_18(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f0^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_19(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f1^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_20(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f2^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_21(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_22() = [0]
                         [0]
                c_23() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {inc^#(x) -> c_12()}
               Weak Rules: {inc^#(s(x)) -> c_11(inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(inc^#) = {}, Uargs(c_11) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 4] x1 + [0]
                        [0 0]      [0]
                inc^#(x1) = [0 0] x1 + [2]
                            [2 0]      [0]
                c_11(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
                c_12() = [1]
                         [0]
           
           * Path {19}: YES(?,O(n^2))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {1}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                true() = [0]
                         [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                false() = [0]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                f0(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f2(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                1() = [0]
                      [0]
                d() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                ge^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                               [3 3]      [3 3]      [0]
                c_16() = [0]
                         [0]
                c_17() = [0]
                         [0]
                c_18(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                f0^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_19(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f1^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_20(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f2^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_21(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_22() = [0]
                         [0]
                c_23() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(s(x), s(y)) -> c_18(ge^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_18) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                ge^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                               [0 2]      [0 0]      [0]
                c_18(x1) = [1 2] x1 + [5]
                           [0 0]      [3]
           
           * Path {19}->{17}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {1}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                true() = [0]
                         [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                false() = [0]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                f0(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f2(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                1() = [0]
                      [0]
                d() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_16() = [0]
                         [0]
                c_17() = [0]
                         [0]
                c_18(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                f0^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_19(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f1^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_20(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f2^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_21(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_22() = [0]
                         [0]
                c_23() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(x, 0()) -> c_16()}
               Weak Rules: {ge^#(s(x), s(y)) -> c_18(ge^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_18) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                ge^#(x1, x2) = [2 1] x1 + [2 0] x2 + [4]
                               [0 0]      [4 1]      [0]
                c_16() = [1]
                         [0]
                c_18(x1) = [1 0] x1 + [6]
                           [0 0]      [7]
           
           * Path {19}->{18}: YES(?,O(n^2))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {1}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                true() = [0]
                         [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                false() = [0]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                f0(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f2(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                1() = [0]
                      [0]
                d() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_16() = [0]
                         [0]
                c_17() = [0]
                         [0]
                c_18(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                f0^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_19(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f1^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_20(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f2^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_21(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_22() = [0]
                         [0]
                c_23() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(0(), s(y)) -> c_17()}
               Weak Rules: {ge^#(s(x), s(y)) -> c_18(ge^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_18) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 6] x1 + [2]
                        [0 1]      [2]
                ge^#(x1, x2) = [2 1] x1 + [0 1] x2 + [0]
                               [1 2]      [2 0]      [0]
                c_17() = [1]
                         [0]
                c_18(x1) = [1 0] x1 + [7]
                           [0 0]      [7]
           
           * Path {20,22,21}: MAYBE
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {1},
                 Uargs(f1^#) = {}, Uargs(c_20) = {1}, Uargs(f2^#) = {},
                 Uargs(c_21) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                true() = [0]
                         [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                false() = [0]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                f0(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f2(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                1() = [0]
                      [0]
                d() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_16() = [0]
                         [0]
                c_17() = [0]
                         [0]
                c_18(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f0^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [3 2] x3 + [0]
                                   [3 3]      [3 3]      [3 3]      [0]
                c_19(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                f1^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [3 2] x3 + [0]
                                   [3 3]      [3 3]      [3 3]      [0]
                c_20(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                f2^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [3 2] x3 + [0]
                                   [3 3]      [3 3]      [3 3]      [0]
                c_21(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_22() = [0]
                         [0]
                c_23() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  f0^#(0(), y, x) -> c_19(f1^#(x, y, x))
                  , f2^#(x, 1(), z) -> c_21(f0^#(x, z, z))
                  , f1^#(x, y, z) -> c_20(f2^#(x, y, z))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {20,22,21}->{23}: NA
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {1},
                 Uargs(f1^#) = {}, Uargs(c_20) = {1}, Uargs(f2^#) = {},
                 Uargs(c_21) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                true() = [0]
                         [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                false() = [0]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                f0(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f2(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                1() = [0]
                      [0]
                d() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_16() = [0]
                         [0]
                c_17() = [0]
                         [0]
                c_18(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f0^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_19(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                f1^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_20(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                f2^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_21(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_22() = [0]
                         [0]
                c_23() = [0]
                         [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {20,22,21}->{24}: NA
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {1},
                 Uargs(f1^#) = {}, Uargs(c_20) = {1}, Uargs(f2^#) = {},
                 Uargs(c_21) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                ifPlus(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                isZero(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                inc(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                true() = [0]
                         [0]
                p(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                false() = [0]
                          [0]
                times(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                timesIter(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                            [0 0]      [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifTimes(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                ge(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                f0(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f1(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                f2(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                 [0 0]      [0 0]      [0 0]      [0]
                1() = [0]
                      [0]
                d() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                p^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                times^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                timesIter^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                              [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0 0] x5 + [0]
                                                [0 0]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                isZero^#(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                inc^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_10() = [0]
                         [0]
                c_11(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                c_12() = [0]
                         [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                c_15(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                ge^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_16() = [0]
                         [0]
                c_17() = [0]
                         [0]
                c_18(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f0^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_19(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                f1^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_20(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                f2^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                c_21(x1) = [1 0] x1 + [0]
                           [0 1]      [0]
                c_22() = [0]
                         [0]
                c_23() = [0]
                         [0]
             
             We have not generated a proof for the resulting sub-problem.
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(x, y) -> c_0(ifPlus^#(isZero(x), x, inc(y)))
              , 2: ifPlus^#(true(), x, y) -> c_1(p^#(y))
              , 3: ifPlus^#(false(), x, y) -> c_2(plus^#(p(x), y))
              , 4: times^#(x, y) -> c_3(timesIter^#(0(), x, y, 0()))
              , 5: timesIter^#(i, x, y, z) ->
                   c_4(ifTimes^#(ge(i, x), i, x, y, z))
              , 6: ifTimes^#(true(), i, x, y, z) -> c_5()
              , 7: ifTimes^#(false(), i, x, y, z) ->
                   c_6(timesIter^#(inc(i), x, y, plus(z, y)))
              , 8: isZero^#(0()) -> c_7()
              , 9: isZero^#(s(0())) -> c_8()
              , 10: isZero^#(s(s(x))) -> c_9(isZero^#(s(x)))
              , 11: inc^#(0()) -> c_10()
              , 12: inc^#(s(x)) -> c_11(inc^#(x))
              , 13: inc^#(x) -> c_12()
              , 14: p^#(0()) -> c_13()
              , 15: p^#(s(x)) -> c_14()
              , 16: p^#(s(s(x))) -> c_15(p^#(s(x)))
              , 17: ge^#(x, 0()) -> c_16()
              , 18: ge^#(0(), s(y)) -> c_17()
              , 19: ge^#(s(x), s(y)) -> c_18(ge^#(x, y))
              , 20: f0^#(0(), y, x) -> c_19(f1^#(x, y, x))
              , 21: f1^#(x, y, z) -> c_20(f2^#(x, y, z))
              , 22: f2^#(x, 1(), z) -> c_21(f0^#(x, z, z))
              , 23: f0^#(x, y, z) -> c_22()
              , 24: f1^#(x, y, z) -> c_23()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{20,22,21}                                                [       MAYBE        ]
                |
                |->{23}                                                  [         NA         ]
                |
                `->{24}                                                  [         NA         ]
             
             ->{19}                                                      [   YES(?,O(n^1))    ]
                |
                |->{17}                                                  [   YES(?,O(n^1))    ]
                |
                `->{18}                                                  [   YES(?,O(n^1))    ]
             
             ->{12}                                                      [   YES(?,O(n^1))    ]
                |
                |->{11}                                                  [   YES(?,O(n^1))    ]
                |
                `->{13}                                                  [   YES(?,O(n^1))    ]
             
             ->{10}                                                      [   YES(?,O(n^1))    ]
                |
                `->{9}                                                   [    YES(?,O(1))     ]
             
             ->{8}                                                       [    YES(?,O(1))     ]
             
             ->{4}                                                       [     inherited      ]
                |
                `->{5,7}                                                 [     inherited      ]
                    |
                    `->{6}                                               [         NA         ]
             
             ->{1,3}                                                     [         NA         ]
                |
                `->{2}                                                   [         NA         ]
                    |
                    |->{14}                                              [         NA         ]
                    |
                    |->{15}                                              [         NA         ]
                    |
                    `->{16}                                              [         NA         ]
                        |
                        `->{15}                                          [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,3}: NA
             --------------
             
             The usable rules for this path are:
             
               {  isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,3}->{2}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {1}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {1}, Uargs(c_0) = {1}, Uargs(ifPlus^#) = {1, 3},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                ifPlus(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                isZero(x1) = [2] x1 + [0]
                inc(x1) = [2] x1 + [3]
                true() = [1]
                p(x1) = [2] x1 + [2]
                false() = [1]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                timesIter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                0() = [3]
                ifTimes(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [1] x1 + [2]
                f0(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f2(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                1() = [0]
                d() = [0]
                c() = [0]
                plus^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                ifPlus^#(x1, x2, x3) = [3] x1 + [3] x2 + [3] x3 + [0]
                c_1(x1) = [3] x1 + [0]
                p^#(x1) = [1] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                timesIter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_4(x1) = [0] x1 + [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                inc^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14() = [0]
                c_15(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16() = [0]
                c_17() = [0]
                c_18(x1) = [0] x1 + [0]
                f0^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_19(x1) = [0] x1 + [0]
                f1^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_20(x1) = [0] x1 + [0]
                f2^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_21(x1) = [0] x1 + [0]
                c_22() = [0]
                c_23() = [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,3}->{2}->{14}: NA
             -------------------------
             
             The usable rules for this path are:
             
               {  isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {1}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {1}, Uargs(c_0) = {1}, Uargs(ifPlus^#) = {1, 3},
                 Uargs(c_1) = {1}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                ifPlus(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                isZero(x1) = [2] x1 + [0]
                inc(x1) = [2] x1 + [3]
                true() = [1]
                p(x1) = [2] x1 + [0]
                false() = [1]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                timesIter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                0() = [2]
                ifTimes(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [1] x1 + [2]
                f0(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f2(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                1() = [0]
                d() = [0]
                c() = [0]
                plus^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                ifPlus^#(x1, x2, x3) = [3] x1 + [0] x2 + [3] x3 + [0]
                c_1(x1) = [1] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                timesIter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_4(x1) = [0] x1 + [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                inc^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14() = [0]
                c_15(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16() = [0]
                c_17() = [0]
                c_18(x1) = [0] x1 + [0]
                f0^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_19(x1) = [0] x1 + [0]
                f1^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_20(x1) = [0] x1 + [0]
                f2^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_21(x1) = [0] x1 + [0]
                c_22() = [0]
                c_23() = [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,3}->{2}->{15}: NA
             -------------------------
             
             The usable rules for this path are:
             
               {  isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {1}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {1}, Uargs(c_0) = {1}, Uargs(ifPlus^#) = {1, 3},
                 Uargs(c_1) = {1}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                ifPlus(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                isZero(x1) = [2] x1 + [0]
                inc(x1) = [2] x1 + [3]
                true() = [1]
                p(x1) = [2] x1 + [0]
                false() = [1]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                timesIter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                0() = [2]
                ifTimes(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [1] x1 + [2]
                f0(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f2(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                1() = [0]
                d() = [0]
                c() = [0]
                plus^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                ifPlus^#(x1, x2, x3) = [3] x1 + [0] x2 + [3] x3 + [0]
                c_1(x1) = [1] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                timesIter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_4(x1) = [0] x1 + [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                inc^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14() = [0]
                c_15(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16() = [0]
                c_17() = [0]
                c_18(x1) = [0] x1 + [0]
                f0^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_19(x1) = [0] x1 + [0]
                f1^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_20(x1) = [0] x1 + [0]
                f2^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_21(x1) = [0] x1 + [0]
                c_22() = [0]
                c_23() = [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,3}->{2}->{16}: NA
             -------------------------
             
             The usable rules for this path are:
             
               {  isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {1}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {1}, Uargs(c_0) = {1}, Uargs(ifPlus^#) = {1, 3},
                 Uargs(c_1) = {1}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {1}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                ifPlus(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                isZero(x1) = [2] x1 + [0]
                inc(x1) = [2] x1 + [3]
                true() = [1]
                p(x1) = [2] x1 + [0]
                false() = [1]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                timesIter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                0() = [2]
                ifTimes(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [1] x1 + [1]
                f0(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f2(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                1() = [0]
                d() = [0]
                c() = [0]
                plus^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                ifPlus^#(x1, x2, x3) = [3] x1 + [0] x2 + [3] x3 + [0]
                c_1(x1) = [1] x1 + [0]
                p^#(x1) = [3] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                timesIter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_4(x1) = [0] x1 + [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                inc^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14() = [0]
                c_15(x1) = [1] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16() = [0]
                c_17() = [0]
                c_18(x1) = [0] x1 + [0]
                f0^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_19(x1) = [0] x1 + [0]
                f1^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_20(x1) = [0] x1 + [0]
                f2^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_21(x1) = [0] x1 + [0]
                c_22() = [0]
                c_23() = [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,3}->{2}->{16}->{15}: NA
             -------------------------------
             
             The usable rules for this path are:
             
               {  isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {1}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {1}, Uargs(c_0) = {1}, Uargs(ifPlus^#) = {1, 3},
                 Uargs(c_1) = {1}, Uargs(p^#) = {}, Uargs(c_2) = {1},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {1}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                ifPlus(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                isZero(x1) = [2] x1 + [0]
                inc(x1) = [2] x1 + [3]
                true() = [1]
                p(x1) = [2] x1 + [0]
                false() = [1]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                timesIter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                0() = [2]
                ifTimes(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [1] x1 + [2]
                f0(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f2(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                1() = [0]
                d() = [0]
                c() = [0]
                plus^#(x1, x2) = [3] x1 + [0] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                ifPlus^#(x1, x2, x3) = [3] x1 + [0] x2 + [3] x3 + [0]
                c_1(x1) = [1] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                timesIter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_4(x1) = [0] x1 + [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                inc^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14() = [0]
                c_15(x1) = [1] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16() = [0]
                c_17() = [0]
                c_18(x1) = [0] x1 + [0]
                f0^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_19(x1) = [0] x1 + [0]
                f1^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_20(x1) = [0] x1 + [0]
                f2^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_21(x1) = [0] x1 + [0]
                c_22() = [0]
                c_23() = [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{5,7}->{6}.
           
           * Path {4}->{5,7}: inherited
             --------------------------
             
             This path is subsumed by the proof of path {4}->{5,7}->{6}.
           
           * Path {4}->{5,7}->{6}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  plus(x, y) -> ifPlus(isZero(x), x, inc(y))
                , inc(0()) -> s(0())
                , inc(s(x)) -> s(inc(x))
                , inc(x) -> s(x)
                , ge(x, 0()) -> true()
                , ge(0(), s(y)) -> false()
                , ge(s(x), s(y)) -> ge(x, y)
                , ifPlus(true(), x, y) -> p(y)
                , ifPlus(false(), x, y) -> plus(p(x), y)
                , isZero(0()) -> true()
                , isZero(s(0())) -> false()
                , isZero(s(s(x))) -> isZero(s(x))
                , p(0()) -> 0()
                , p(s(x)) -> x
                , p(s(s(x))) -> s(p(s(x)))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {8}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                ifPlus(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                isZero(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                true() = [0]
                p(x1) = [0] x1 + [0]
                false() = [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                timesIter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                0() = [0]
                ifTimes(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                f0(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f2(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                1() = [0]
                d() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                timesIter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_4(x1) = [0] x1 + [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                inc^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14() = [0]
                c_15(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16() = [0]
                c_17() = [0]
                c_18(x1) = [0] x1 + [0]
                f0^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_19(x1) = [0] x1 + [0]
                f1^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_20(x1) = [0] x1 + [0]
                f2^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_21(x1) = [0] x1 + [0]
                c_22() = [0]
                c_23() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isZero^#(0()) -> c_7()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isZero^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [7]
                isZero^#(x1) = [1] x1 + [7]
                c_7() = [1]
           
           * Path {10}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {1}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                ifPlus(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                isZero(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                true() = [0]
                p(x1) = [0] x1 + [0]
                false() = [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                timesIter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                0() = [0]
                ifTimes(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [1] x1 + [0]
                f0(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f2(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                1() = [0]
                d() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                timesIter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_4(x1) = [0] x1 + [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                isZero^#(x1) = [3] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [1] x1 + [0]
                inc^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14() = [0]
                c_15(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16() = [0]
                c_17() = [0]
                c_18(x1) = [0] x1 + [0]
                f0^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_19(x1) = [0] x1 + [0]
                f1^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_20(x1) = [0] x1 + [0]
                f2^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_21(x1) = [0] x1 + [0]
                c_22() = [0]
                c_23() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isZero^#(s(s(x))) -> c_9(isZero^#(s(x)))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isZero^#) = {}, Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                isZero^#(x1) = [1] x1 + [0]
                c_9(x1) = [1] x1 + [3]
           
           * Path {10}->{9}: YES(?,O(1))
             ---------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {1}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                ifPlus(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                isZero(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                true() = [0]
                p(x1) = [0] x1 + [0]
                false() = [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                timesIter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                0() = [0]
                ifTimes(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                f0(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f2(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                1() = [0]
                d() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                timesIter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_4(x1) = [0] x1 + [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [1] x1 + [0]
                inc^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14() = [0]
                c_15(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16() = [0]
                c_17() = [0]
                c_18(x1) = [0] x1 + [0]
                f0^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_19(x1) = [0] x1 + [0]
                f1^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_20(x1) = [0] x1 + [0]
                f2^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_21(x1) = [0] x1 + [0]
                c_22() = [0]
                c_23() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isZero^#(s(0())) -> c_8()}
               Weak Rules: {isZero^#(s(s(x))) -> c_9(isZero^#(s(x)))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(isZero^#) = {}, Uargs(c_9) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                s(x1) = [0] x1 + [3]
                isZero^#(x1) = [2] x1 + [2]
                c_8() = [1]
                c_9(x1) = [1] x1 + [0]
           
           * Path {12}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {1}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                ifPlus(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                isZero(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                true() = [0]
                p(x1) = [0] x1 + [0]
                false() = [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                timesIter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                0() = [0]
                ifTimes(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [1] x1 + [0]
                f0(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f2(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                1() = [0]
                d() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                timesIter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_4(x1) = [0] x1 + [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                inc^#(x1) = [3] x1 + [0]
                c_10() = [0]
                c_11(x1) = [1] x1 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14() = [0]
                c_15(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16() = [0]
                c_17() = [0]
                c_18(x1) = [0] x1 + [0]
                f0^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_19(x1) = [0] x1 + [0]
                f1^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_20(x1) = [0] x1 + [0]
                f2^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_21(x1) = [0] x1 + [0]
                c_22() = [0]
                c_23() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {inc^#(s(x)) -> c_11(inc^#(x))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(inc^#) = {}, Uargs(c_11) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [4]
                inc^#(x1) = [2] x1 + [0]
                c_11(x1) = [1] x1 + [7]
           
           * Path {12}->{11}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {1}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                ifPlus(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                isZero(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                true() = [0]
                p(x1) = [0] x1 + [0]
                false() = [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                timesIter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                0() = [0]
                ifTimes(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                f0(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f2(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                1() = [0]
                d() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                timesIter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_4(x1) = [0] x1 + [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                inc^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11(x1) = [1] x1 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14() = [0]
                c_15(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16() = [0]
                c_17() = [0]
                c_18(x1) = [0] x1 + [0]
                f0^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_19(x1) = [0] x1 + [0]
                f1^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_20(x1) = [0] x1 + [0]
                f2^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_21(x1) = [0] x1 + [0]
                c_22() = [0]
                c_23() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {inc^#(0()) -> c_10()}
               Weak Rules: {inc^#(s(x)) -> c_11(inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(inc^#) = {}, Uargs(c_11) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [0]
                inc^#(x1) = [2] x1 + [0]
                c_10() = [1]
                c_11(x1) = [1] x1 + [0]
           
           * Path {12}->{13}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {1}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                ifPlus(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                isZero(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                true() = [0]
                p(x1) = [0] x1 + [0]
                false() = [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                timesIter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                0() = [0]
                ifTimes(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                f0(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f2(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                1() = [0]
                d() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                timesIter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_4(x1) = [0] x1 + [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                inc^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11(x1) = [1] x1 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14() = [0]
                c_15(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16() = [0]
                c_17() = [0]
                c_18(x1) = [0] x1 + [0]
                f0^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_19(x1) = [0] x1 + [0]
                f1^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_20(x1) = [0] x1 + [0]
                f2^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_21(x1) = [0] x1 + [0]
                c_22() = [0]
                c_23() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {inc^#(x) -> c_12()}
               Weak Rules: {inc^#(s(x)) -> c_11(inc^#(x))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(inc^#) = {}, Uargs(c_11) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                inc^#(x1) = [2] x1 + [4]
                c_11(x1) = [1] x1 + [3]
                c_12() = [1]
           
           * Path {19}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {1}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                ifPlus(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                isZero(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                true() = [0]
                p(x1) = [0] x1 + [0]
                false() = [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                timesIter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                0() = [0]
                ifTimes(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [1] x1 + [0]
                f0(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f2(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                1() = [0]
                d() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                timesIter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_4(x1) = [0] x1 + [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                inc^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14() = [0]
                c_15(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_16() = [0]
                c_17() = [0]
                c_18(x1) = [1] x1 + [0]
                f0^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_19(x1) = [0] x1 + [0]
                f1^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_20(x1) = [0] x1 + [0]
                f2^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_21(x1) = [0] x1 + [0]
                c_22() = [0]
                c_23() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(s(x), s(y)) -> c_18(ge^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_18) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                ge^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_18(x1) = [1] x1 + [7]
           
           * Path {19}->{17}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {1}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                ifPlus(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                isZero(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                true() = [0]
                p(x1) = [0] x1 + [0]
                false() = [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                timesIter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                0() = [0]
                ifTimes(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                f0(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f2(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                1() = [0]
                d() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                timesIter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_4(x1) = [0] x1 + [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                inc^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14() = [0]
                c_15(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16() = [0]
                c_17() = [0]
                c_18(x1) = [1] x1 + [0]
                f0^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_19(x1) = [0] x1 + [0]
                f1^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_20(x1) = [0] x1 + [0]
                f2^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_21(x1) = [0] x1 + [0]
                c_22() = [0]
                c_23() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(x, 0()) -> c_16()}
               Weak Rules: {ge^#(s(x), s(y)) -> c_18(ge^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_18) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                ge^#(x1, x2) = [2] x1 + [2] x2 + [4]
                c_16() = [1]
                c_18(x1) = [1] x1 + [7]
           
           * Path {19}->{18}: YES(?,O(n^1))
             ------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {1}, Uargs(f0^#) = {}, Uargs(c_19) = {},
                 Uargs(f1^#) = {}, Uargs(c_20) = {}, Uargs(f2^#) = {},
                 Uargs(c_21) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                ifPlus(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                isZero(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                true() = [0]
                p(x1) = [0] x1 + [0]
                false() = [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                timesIter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                0() = [0]
                ifTimes(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                f0(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f2(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                1() = [0]
                d() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                timesIter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_4(x1) = [0] x1 + [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                inc^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14() = [0]
                c_15(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16() = [0]
                c_17() = [0]
                c_18(x1) = [1] x1 + [0]
                f0^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_19(x1) = [0] x1 + [0]
                f1^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_20(x1) = [0] x1 + [0]
                f2^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_21(x1) = [0] x1 + [0]
                c_22() = [0]
                c_23() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ge^#(0(), s(y)) -> c_17()}
               Weak Rules: {ge^#(s(x), s(y)) -> c_18(ge^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(ge^#) = {}, Uargs(c_18) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                ge^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_17() = [1]
                c_18(x1) = [1] x1 + [7]
           
           * Path {20,22,21}: MAYBE
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {1},
                 Uargs(f1^#) = {}, Uargs(c_20) = {1}, Uargs(f2^#) = {},
                 Uargs(c_21) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                ifPlus(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                isZero(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                true() = [0]
                p(x1) = [0] x1 + [0]
                false() = [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                timesIter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                0() = [0]
                ifTimes(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                f0(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f2(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                1() = [0]
                d() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                timesIter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_4(x1) = [0] x1 + [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                inc^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14() = [0]
                c_15(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16() = [0]
                c_17() = [0]
                c_18(x1) = [0] x1 + [0]
                f0^#(x1, x2, x3) = [0] x1 + [0] x2 + [2] x3 + [0]
                c_19(x1) = [1] x1 + [0]
                f1^#(x1, x2, x3) = [0] x1 + [0] x2 + [2] x3 + [0]
                c_20(x1) = [1] x1 + [0]
                f2^#(x1, x2, x3) = [0] x1 + [0] x2 + [2] x3 + [0]
                c_21(x1) = [1] x1 + [0]
                c_22() = [0]
                c_23() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  f0^#(0(), y, x) -> c_19(f1^#(x, y, x))
                  , f2^#(x, 1(), z) -> c_21(f0^#(x, z, z))
                  , f1^#(x, y, z) -> c_20(f2^#(x, y, z))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {20,22,21}->{23}: NA
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {1},
                 Uargs(f1^#) = {}, Uargs(c_20) = {1}, Uargs(f2^#) = {},
                 Uargs(c_21) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                ifPlus(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                isZero(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                true() = [0]
                p(x1) = [0] x1 + [0]
                false() = [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                timesIter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                0() = [0]
                ifTimes(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                f0(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f2(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                1() = [0]
                d() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                timesIter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_4(x1) = [0] x1 + [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                inc^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14() = [0]
                c_15(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16() = [0]
                c_17() = [0]
                c_18(x1) = [0] x1 + [0]
                f0^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_19(x1) = [1] x1 + [0]
                f1^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_20(x1) = [1] x1 + [0]
                f2^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_21(x1) = [1] x1 + [0]
                c_22() = [0]
                c_23() = [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {20,22,21}->{24}: NA
             -------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(ifPlus) = {}, Uargs(isZero) = {},
                 Uargs(inc) = {}, Uargs(p) = {}, Uargs(times) = {},
                 Uargs(timesIter) = {}, Uargs(ifTimes) = {}, Uargs(ge) = {},
                 Uargs(s) = {}, Uargs(f0) = {}, Uargs(f1) = {}, Uargs(f2) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(ifPlus^#) = {},
                 Uargs(c_1) = {}, Uargs(p^#) = {}, Uargs(c_2) = {},
                 Uargs(times^#) = {}, Uargs(c_3) = {}, Uargs(timesIter^#) = {},
                 Uargs(c_4) = {}, Uargs(ifTimes^#) = {}, Uargs(c_6) = {},
                 Uargs(isZero^#) = {}, Uargs(c_9) = {}, Uargs(inc^#) = {},
                 Uargs(c_11) = {}, Uargs(c_15) = {}, Uargs(ge^#) = {},
                 Uargs(c_18) = {}, Uargs(f0^#) = {}, Uargs(c_19) = {1},
                 Uargs(f1^#) = {}, Uargs(c_20) = {1}, Uargs(f2^#) = {},
                 Uargs(c_21) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                ifPlus(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                isZero(x1) = [0] x1 + [0]
                inc(x1) = [0] x1 + [0]
                true() = [0]
                p(x1) = [0] x1 + [0]
                false() = [0]
                times(x1, x2) = [0] x1 + [0] x2 + [0]
                timesIter(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                0() = [0]
                ifTimes(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                ge(x1, x2) = [0] x1 + [0] x2 + [0]
                s(x1) = [0] x1 + [0]
                f0(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f1(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                f2(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                1() = [0]
                d() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                p^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                times^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                timesIter^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_4(x1) = [0] x1 + [0]
                ifTimes^#(x1, x2, x3, x4, x5) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0] x5 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                isZero^#(x1) = [0] x1 + [0]
                c_7() = [0]
                c_8() = [0]
                c_9(x1) = [0] x1 + [0]
                inc^#(x1) = [0] x1 + [0]
                c_10() = [0]
                c_11(x1) = [0] x1 + [0]
                c_12() = [0]
                c_13() = [0]
                c_14() = [0]
                c_15(x1) = [0] x1 + [0]
                ge^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_16() = [0]
                c_17() = [0]
                c_18(x1) = [0] x1 + [0]
                f0^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_19(x1) = [1] x1 + [0]
                f1^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_20(x1) = [1] x1 + [0]
                f2^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_21(x1) = [1] x1 + [0]
                c_22() = [0]
                c_23() = [0]
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputSecret 07 TRS aprove02

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
TIMEOUT
InputSecret 07 TRS aprove02

stdout:

TIMEOUT

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           TIMEOUT
Input Problem:    runtime-complexity with respect to
  Rules:
    {  plus(x, y) -> ifPlus(isZero(x), x, inc(y))
     , ifPlus(true(), x, y) -> p(y)
     , ifPlus(false(), x, y) -> plus(p(x), y)
     , times(x, y) -> timesIter(0(), x, y, 0())
     , timesIter(i, x, y, z) -> ifTimes(ge(i, x), i, x, y, z)
     , ifTimes(true(), i, x, y, z) -> z
     , ifTimes(false(), i, x, y, z) ->
       timesIter(inc(i), x, y, plus(z, y))
     , isZero(0()) -> true()
     , isZero(s(0())) -> false()
     , isZero(s(s(x))) -> isZero(s(x))
     , inc(0()) -> s(0())
     , inc(s(x)) -> s(inc(x))
     , inc(x) -> s(x)
     , p(0()) -> 0()
     , p(s(x)) -> x
     , p(s(s(x))) -> s(p(s(x)))
     , ge(x, 0()) -> true()
     , ge(0(), s(y)) -> false()
     , ge(s(x), s(y)) -> ge(x, y)
     , f0(0(), y, x) -> f1(x, y, x)
     , f1(x, y, z) -> f2(x, y, z)
     , f2(x, 1(), z) -> f0(x, z, z)
     , f0(x, y, z) -> d()
     , f1(x, y, z) -> c()}

Proof Output:    
  Computation stopped due to timeout after 60.0 seconds