Problem Secret 07 TRS aprove07

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputSecret 07 TRS aprove07

stdout:

MAYBE

Problem:
 plus(x,y) -> plusIter(x,y,0())
 plusIter(x,y,z) -> ifPlus(le(x,z),x,y,z)
 ifPlus(true(),x,y,z) -> y
 ifPlus(false(),x,y,z) -> plusIter(x,s(y),s(z))
 le(s(x),0()) -> false()
 le(0(),y) -> true()
 le(s(x),s(y)) -> le(x,y)
 sum(xs) -> sumIter(xs,0())
 sumIter(xs,x) -> ifSum(isempty(xs),xs,x,plus(x,head(xs)))
 ifSum(true(),xs,x,y) -> x
 ifSum(false(),xs,x,y) -> sumIter(tail(xs),y)
 isempty(nil()) -> true()
 isempty(cons(x,xs)) -> false()
 head(nil()) -> error()
 head(cons(x,xs)) -> x
 tail(nil()) -> nil()
 tail(cons(x,xs)) -> xs
 a() -> b()
 a() -> c()

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputSecret 07 TRS aprove07

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputSecret 07 TRS aprove07

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  plus(x, y) -> plusIter(x, y, 0())
     , plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z)
     , ifPlus(true(), x, y, z) -> y
     , ifPlus(false(), x, y, z) -> plusIter(x, s(y), s(z))
     , le(s(x), 0()) -> false()
     , le(0(), y) -> true()
     , le(s(x), s(y)) -> le(x, y)
     , sum(xs) -> sumIter(xs, 0())
     , sumIter(xs, x) -> ifSum(isempty(xs), xs, x, plus(x, head(xs)))
     , ifSum(true(), xs, x, y) -> x
     , ifSum(false(), xs, x, y) -> sumIter(tail(xs), y)
     , isempty(nil()) -> true()
     , isempty(cons(x, xs)) -> false()
     , head(nil()) -> error()
     , head(cons(x, xs)) -> x
     , tail(nil()) -> nil()
     , tail(cons(x, xs)) -> xs
     , a() -> b()
     , a() -> c()}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(x, y) -> c_0(plusIter^#(x, y, 0()))
              , 2: plusIter^#(x, y, z) -> c_1(ifPlus^#(le(x, z), x, y, z))
              , 3: ifPlus^#(true(), x, y, z) -> c_2()
              , 4: ifPlus^#(false(), x, y, z) -> c_3(plusIter^#(x, s(y), s(z)))
              , 5: le^#(s(x), 0()) -> c_4()
              , 6: le^#(0(), y) -> c_5()
              , 7: le^#(s(x), s(y)) -> c_6(le^#(x, y))
              , 8: sum^#(xs) -> c_7(sumIter^#(xs, 0()))
              , 9: sumIter^#(xs, x) ->
                   c_8(ifSum^#(isempty(xs), xs, x, plus(x, head(xs))))
              , 10: ifSum^#(true(), xs, x, y) -> c_9()
              , 11: ifSum^#(false(), xs, x, y) -> c_10(sumIter^#(tail(xs), y))
              , 12: isempty^#(nil()) -> c_11()
              , 13: isempty^#(cons(x, xs)) -> c_12()
              , 14: head^#(nil()) -> c_13()
              , 15: head^#(cons(x, xs)) -> c_14()
              , 16: tail^#(nil()) -> c_15()
              , 17: tail^#(cons(x, xs)) -> c_16()
              , 18: a^#() -> c_17()
              , 19: a^#() -> c_18()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{19}                                                      [    YES(?,O(1))     ]
             
             ->{18}                                                      [    YES(?,O(1))     ]
             
             ->{17}                                                      [    YES(?,O(1))     ]
             
             ->{16}                                                      [    YES(?,O(1))     ]
             
             ->{15}                                                      [    YES(?,O(1))     ]
             
             ->{14}                                                      [    YES(?,O(1))     ]
             
             ->{13}                                                      [    YES(?,O(1))     ]
             
             ->{12}                                                      [    YES(?,O(1))     ]
             
             ->{8}                                                       [     inherited      ]
                |
                `->{9,11}                                                [     inherited      ]
                    |
                    `->{10}                                              [         NA         ]
             
             ->{7}                                                       [   YES(?,O(n^1))    ]
                |
                |->{5}                                                   [   YES(?,O(n^3))    ]
                |
                `->{6}                                                   [   YES(?,O(n^2))    ]
             
             ->{1}                                                       [     inherited      ]
                |
                `->{2,4}                                                 [       MAYBE        ]
                    |
                    `->{3}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2,4}.
           
           * Path {1}->{2,4}: MAYBE
             ----------------------
             
             The usable rules for this path are:
             
               {  le(s(x), 0()) -> false()
                , le(0(), y) -> true()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  plus^#(x, y) -> c_0(plusIter^#(x, y, 0()))
                  , plusIter^#(x, y, z) -> c_1(ifPlus^#(le(x, z), x, y, z))
                  , ifPlus^#(false(), x, y, z) -> c_3(plusIter^#(x, s(y), s(z)))
                  , le(s(x), 0()) -> false()
                  , le(0(), y) -> true()
                  , le(s(x), s(y)) -> le(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1}->{2,4}->{3}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  le(s(x), 0()) -> false()
                , le(0(), y) -> true()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {1}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {1}, Uargs(ifPlus^#) = {1}, Uargs(c_3) = {1},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [1 0 0] x1 + [0 0 0] x2 + [2]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [1]
                         [0]
                         [0]
                false() = [1]
                          [0]
                          [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                ifPlus^#(x1, x2, x3, x4) = [3 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16() = [0]
                         [0]
                         [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {1}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [3 3 3]      [3 3 3]      [0]
                               [3 3 3]      [3 3 3]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16() = [0]
                         [0]
                         [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), s(y)) -> c_6(le^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [2]
                        [0 0 2]      [2]
                        [0 0 0]      [0]
                le^#(x1, x2) = [1 0 0] x1 + [5 0 0] x2 + [0]
                               [2 2 0]      [0 2 0]      [0]
                               [4 0 0]      [0 2 0]      [0]
                c_6(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {7}->{5}: YES(?,O(n^3))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {1}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16() = [0]
                         [0]
                         [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), 0()) -> c_4()}
               Weak Rules: {le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 3 2] x1 + [2]
                        [0 1 2]      [0]
                        [0 0 1]      [2]
                le^#(x1, x2) = [2 2 0] x1 + [0 1 0] x2 + [0]
                               [0 0 0]      [0 0 2]      [0]
                               [0 1 0]      [0 2 4]      [0]
                c_4() = [1]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [0]
                          [0 0 0]      [6]
           
           * Path {7}->{6}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {1}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16() = [0]
                         [0]
                         [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(0(), y) -> c_5()}
               Weak Rules: {le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 4 2] x1 + [0]
                        [0 0 2]      [0]
                        [0 0 1]      [0]
                le^#(x1, x2) = [2 2 2] x1 + [2 0 0] x2 + [0]
                               [2 2 2]      [0 0 4]      [0]
                               [2 2 2]      [0 0 0]      [0]
                c_5() = [1]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{9,11}->{10}.
           
           * Path {8}->{9,11}: inherited
             ---------------------------
             
             This path is subsumed by the proof of path {8}->{9,11}->{10}.
           
           * Path {8}->{9,11}->{10}: NA
             --------------------------
             
             The usable rules for this path are:
             
               {  plus(x, y) -> plusIter(x, y, 0())
                , isempty(nil()) -> true()
                , isempty(cons(x, xs)) -> false()
                , head(nil()) -> error()
                , head(cons(x, xs)) -> x
                , tail(nil()) -> nil()
                , tail(cons(x, xs)) -> xs
                , plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z)
                , ifPlus(true(), x, y, z) -> y
                , ifPlus(false(), x, y, z) -> plusIter(x, s(y), s(z))
                , le(s(x), 0()) -> false()
                , le(0(), y) -> true()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {12}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16() = [0]
                         [0]
                         [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isempty^#(nil()) -> c_11()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isempty^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                isempty^#(x1) = [0 2 0] x1 + [7]
                                [2 2 0]      [3]
                                [2 2 2]      [3]
                c_11() = [0]
                         [1]
                         [1]
           
           * Path {13}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16() = [0]
                         [0]
                         [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isempty^#(cons(x, xs)) -> c_12()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(isempty^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [2]
                               [0 0 0]      [0 0 0]      [2]
                               [0 0 0]      [0 0 0]      [2]
                isempty^#(x1) = [0 2 0] x1 + [7]
                                [2 2 0]      [3]
                                [2 2 2]      [3]
                c_12() = [0]
                         [1]
                         [1]
           
           * Path {14}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16() = [0]
                         [0]
                         [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {head^#(nil()) -> c_13()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(head^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                head^#(x1) = [0 2 0] x1 + [7]
                             [2 2 0]      [3]
                             [2 2 2]      [3]
                c_13() = [0]
                         [1]
                         [1]
           
           * Path {15}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16() = [0]
                         [0]
                         [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {head^#(cons(x, xs)) -> c_14()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(head^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [2]
                               [0 0 0]      [0 0 0]      [2]
                               [0 0 0]      [0 0 0]      [2]
                head^#(x1) = [0 2 0] x1 + [7]
                             [2 2 0]      [3]
                             [2 2 2]      [3]
                c_14() = [0]
                         [1]
                         [1]
           
           * Path {16}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16() = [0]
                         [0]
                         [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {tail^#(nil()) -> c_15()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                tail^#(x1) = [0 2 0] x1 + [7]
                             [2 2 0]      [3]
                             [2 2 2]      [3]
                c_15() = [0]
                         [1]
                         [1]
           
           * Path {17}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16() = [0]
                         [0]
                         [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {tail^#(cons(x, xs)) -> c_16()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [2]
                               [0 0 0]      [0 0 0]      [2]
                               [0 0 0]      [0 0 0]      [2]
                tail^#(x1) = [0 2 0] x1 + [7]
                             [2 2 0]      [3]
                             [2 2 2]      [3]
                c_16() = [0]
                         [1]
                         [1]
           
           * Path {18}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16() = [0]
                         [0]
                         [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a^#() -> c_17()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a^#() = [7]
                        [7]
                        [7]
                c_17() = [0]
                         [3]
                         [3]
           
           * Path {19}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14() = [0]
                         [0]
                         [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16() = [0]
                         [0]
                         [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a^#() -> c_18()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a^#() = [7]
                        [7]
                        [7]
                c_18() = [0]
                         [3]
                         [3]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(x, y) -> c_0(plusIter^#(x, y, 0()))
              , 2: plusIter^#(x, y, z) -> c_1(ifPlus^#(le(x, z), x, y, z))
              , 3: ifPlus^#(true(), x, y, z) -> c_2()
              , 4: ifPlus^#(false(), x, y, z) -> c_3(plusIter^#(x, s(y), s(z)))
              , 5: le^#(s(x), 0()) -> c_4()
              , 6: le^#(0(), y) -> c_5()
              , 7: le^#(s(x), s(y)) -> c_6(le^#(x, y))
              , 8: sum^#(xs) -> c_7(sumIter^#(xs, 0()))
              , 9: sumIter^#(xs, x) ->
                   c_8(ifSum^#(isempty(xs), xs, x, plus(x, head(xs))))
              , 10: ifSum^#(true(), xs, x, y) -> c_9()
              , 11: ifSum^#(false(), xs, x, y) -> c_10(sumIter^#(tail(xs), y))
              , 12: isempty^#(nil()) -> c_11()
              , 13: isempty^#(cons(x, xs)) -> c_12()
              , 14: head^#(nil()) -> c_13()
              , 15: head^#(cons(x, xs)) -> c_14()
              , 16: tail^#(nil()) -> c_15()
              , 17: tail^#(cons(x, xs)) -> c_16()
              , 18: a^#() -> c_17()
              , 19: a^#() -> c_18()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{19}                                                      [    YES(?,O(1))     ]
             
             ->{18}                                                      [    YES(?,O(1))     ]
             
             ->{17}                                                      [    YES(?,O(1))     ]
             
             ->{16}                                                      [    YES(?,O(1))     ]
             
             ->{15}                                                      [    YES(?,O(1))     ]
             
             ->{14}                                                      [    YES(?,O(1))     ]
             
             ->{13}                                                      [    YES(?,O(1))     ]
             
             ->{12}                                                      [    YES(?,O(1))     ]
             
             ->{8}                                                       [     inherited      ]
                |
                `->{9,11}                                                [     inherited      ]
                    |
                    `->{10}                                              [         NA         ]
             
             ->{7}                                                       [   YES(?,O(n^2))    ]
                |
                |->{5}                                                   [   YES(?,O(n^1))    ]
                |
                `->{6}                                                   [   YES(?,O(n^2))    ]
             
             ->{1}                                                       [     inherited      ]
                |
                `->{2,4}                                                 [       MAYBE        ]
                    |
                    `->{3}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2,4}.
           
           * Path {1}->{2,4}: MAYBE
             ----------------------
             
             The usable rules for this path are:
             
               {  le(s(x), 0()) -> false()
                , le(0(), y) -> true()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  plus^#(x, y) -> c_0(plusIter^#(x, y, 0()))
                  , plusIter^#(x, y, z) -> c_1(ifPlus^#(le(x, z), x, y, z))
                  , ifPlus^#(false(), x, y, z) -> c_3(plusIter^#(x, s(y), s(z)))
                  , le(s(x), 0()) -> false()
                  , le(0(), y) -> true()
                  , le(s(x), s(y)) -> le(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1}->{2,4}->{3}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  le(s(x), 0()) -> false()
                , le(0(), y) -> true()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {1}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {1}, Uargs(ifPlus^#) = {1}, Uargs(c_3) = {1},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [1]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [2 0] x1 + [3 0] x2 + [3]
                             [0 0]      [0 0]      [3]
                true() = [0]
                         [1]
                false() = [1]
                          [1]
                s(x1) = [1 0] x1 + [1]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                ifPlus^#(x1, x2, x3, x4) = [3 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16() = [0]
                         [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {1}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                               [3 3]      [3 3]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16() = [0]
                         [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), s(y)) -> c_6(le^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                le^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                               [0 2]      [0 0]      [0]
                c_6(x1) = [1 2] x1 + [5]
                          [0 0]      [3]
           
           * Path {7}->{5}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {1}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16() = [0]
                         [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), 0()) -> c_4()}
               Weak Rules: {le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [0]
                s(x1) = [1 4] x1 + [2]
                        [0 0]      [0]
                le^#(x1, x2) = [2 0] x1 + [2 0] x2 + [0]
                               [0 0]      [0 2]      [0]
                c_4() = [1]
                        [0]
                c_6(x1) = [1 2] x1 + [3]
                          [0 0]      [0]
           
           * Path {7}->{6}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {1}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16() = [0]
                         [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(0(), y) -> c_5()}
               Weak Rules: {le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                le^#(x1, x2) = [3 3] x1 + [4 0] x2 + [0]
                               [4 1]      [2 0]      [0]
                c_5() = [1]
                        [0]
                c_6(x1) = [1 0] x1 + [3]
                          [0 0]      [7]
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{9,11}->{10}.
           
           * Path {8}->{9,11}: inherited
             ---------------------------
             
             This path is subsumed by the proof of path {8}->{9,11}->{10}.
           
           * Path {8}->{9,11}->{10}: NA
             --------------------------
             
             The usable rules for this path are:
             
               {  plus(x, y) -> plusIter(x, y, 0())
                , isempty(nil()) -> true()
                , isempty(cons(x, xs)) -> false()
                , head(nil()) -> error()
                , head(cons(x, xs)) -> x
                , tail(nil()) -> nil()
                , tail(cons(x, xs)) -> xs
                , plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z)
                , ifPlus(true(), x, y, z) -> y
                , ifPlus(false(), x, y, z) -> plusIter(x, s(y), s(z))
                , le(s(x), 0()) -> false()
                , le(0(), y) -> true()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {12}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16() = [0]
                         [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isempty^#(nil()) -> c_11()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isempty^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                isempty^#(x1) = [2 0] x1 + [7]
                                [2 2]      [7]
                c_11() = [0]
                         [1]
           
           * Path {13}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16() = [0]
                         [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isempty^#(cons(x, xs)) -> c_12()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(isempty^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                               [0 0]      [0 0]      [2]
                isempty^#(x1) = [2 0] x1 + [7]
                                [2 2]      [7]
                c_12() = [0]
                         [1]
           
           * Path {14}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16() = [0]
                         [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {head^#(nil()) -> c_13()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(head^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                head^#(x1) = [2 0] x1 + [7]
                             [2 2]      [7]
                c_13() = [0]
                         [1]
           
           * Path {15}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16() = [0]
                         [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {head^#(cons(x, xs)) -> c_14()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(head^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                               [0 0]      [0 0]      [2]
                head^#(x1) = [2 0] x1 + [7]
                             [2 2]      [7]
                c_14() = [0]
                         [1]
           
           * Path {16}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16() = [0]
                         [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {tail^#(nil()) -> c_15()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                tail^#(x1) = [2 0] x1 + [7]
                             [2 2]      [7]
                c_15() = [0]
                         [1]
           
           * Path {17}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16() = [0]
                         [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {tail^#(cons(x, xs)) -> c_16()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                               [0 0]      [0 0]      [2]
                tail^#(x1) = [2 0] x1 + [7]
                             [2 2]      [7]
                c_16() = [0]
                         [1]
           
           * Path {18}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16() = [0]
                         [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a^#() -> c_17()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a^#() = [7]
                        [7]
                c_17() = [0]
                         [1]
           
           * Path {19}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9() = [0]
                        [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14() = [0]
                         [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16() = [0]
                         [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a^#() -> c_18()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a^#() = [7]
                        [7]
                c_18() = [0]
                         [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(x, y) -> c_0(plusIter^#(x, y, 0()))
              , 2: plusIter^#(x, y, z) -> c_1(ifPlus^#(le(x, z), x, y, z))
              , 3: ifPlus^#(true(), x, y, z) -> c_2()
              , 4: ifPlus^#(false(), x, y, z) -> c_3(plusIter^#(x, s(y), s(z)))
              , 5: le^#(s(x), 0()) -> c_4()
              , 6: le^#(0(), y) -> c_5()
              , 7: le^#(s(x), s(y)) -> c_6(le^#(x, y))
              , 8: sum^#(xs) -> c_7(sumIter^#(xs, 0()))
              , 9: sumIter^#(xs, x) ->
                   c_8(ifSum^#(isempty(xs), xs, x, plus(x, head(xs))))
              , 10: ifSum^#(true(), xs, x, y) -> c_9()
              , 11: ifSum^#(false(), xs, x, y) -> c_10(sumIter^#(tail(xs), y))
              , 12: isempty^#(nil()) -> c_11()
              , 13: isempty^#(cons(x, xs)) -> c_12()
              , 14: head^#(nil()) -> c_13()
              , 15: head^#(cons(x, xs)) -> c_14()
              , 16: tail^#(nil()) -> c_15()
              , 17: tail^#(cons(x, xs)) -> c_16()
              , 18: a^#() -> c_17()
              , 19: a^#() -> c_18()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{19}                                                      [    YES(?,O(1))     ]
             
             ->{18}                                                      [    YES(?,O(1))     ]
             
             ->{17}                                                      [    YES(?,O(1))     ]
             
             ->{16}                                                      [    YES(?,O(1))     ]
             
             ->{15}                                                      [    YES(?,O(1))     ]
             
             ->{14}                                                      [    YES(?,O(1))     ]
             
             ->{13}                                                      [    YES(?,O(1))     ]
             
             ->{12}                                                      [    YES(?,O(1))     ]
             
             ->{8}                                                       [     inherited      ]
                |
                `->{9,11}                                                [     inherited      ]
                    |
                    `->{10}                                              [         NA         ]
             
             ->{7}                                                       [   YES(?,O(n^1))    ]
                |
                |->{5}                                                   [   YES(?,O(n^1))    ]
                |
                `->{6}                                                   [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [     inherited      ]
                |
                `->{2,4}                                                 [       MAYBE        ]
                    |
                    `->{3}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2,4}.
           
           * Path {1}->{2,4}: MAYBE
             ----------------------
             
             The usable rules for this path are:
             
               {  le(s(x), 0()) -> false()
                , le(0(), y) -> true()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  plus^#(x, y) -> c_0(plusIter^#(x, y, 0()))
                  , plusIter^#(x, y, z) -> c_1(ifPlus^#(le(x, z), x, y, z))
                  , ifPlus^#(false(), x, y, z) -> c_3(plusIter^#(x, s(y), s(z)))
                  , le(s(x), 0()) -> false()
                  , le(0(), y) -> true()
                  , le(s(x), s(y)) -> le(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1}->{2,4}->{3}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  le(s(x), 0()) -> false()
                , le(0(), y) -> true()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {1}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {1}, Uargs(ifPlus^#) = {1}, Uargs(c_3) = {1},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [2] x2 + [1]
                true() = [0]
                false() = [0]
                s(x1) = [1] x1 + [2]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [1] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [3] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2() = [0]
                c_3(x1) = [1] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16() = [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {1}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [1] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16() = [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), s(y)) -> c_6(le^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                le^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_6(x1) = [1] x1 + [7]
           
           * Path {7}->{5}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {1}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [0] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16() = [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), 0()) -> c_4()}
               Weak Rules: {le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                le^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_4() = [1]
                c_6(x1) = [1] x1 + [7]
           
           * Path {7}->{6}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {1}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [0] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16() = [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {le^#(0(), y) -> c_5()}
               Weak Rules: {le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                le^#(x1, x2) = [2] x1 + [0] x2 + [4]
                c_5() = [1]
                c_6(x1) = [1] x1 + [2]
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{9,11}->{10}.
           
           * Path {8}->{9,11}: inherited
             ---------------------------
             
             This path is subsumed by the proof of path {8}->{9,11}->{10}.
           
           * Path {8}->{9,11}->{10}: NA
             --------------------------
             
             The usable rules for this path are:
             
               {  plus(x, y) -> plusIter(x, y, 0())
                , isempty(nil()) -> true()
                , isempty(cons(x, xs)) -> false()
                , head(nil()) -> error()
                , head(cons(x, xs)) -> x
                , tail(nil()) -> nil()
                , tail(cons(x, xs)) -> xs
                , plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z)
                , ifPlus(true(), x, y, z) -> y
                , ifPlus(false(), x, y, z) -> plusIter(x, s(y), s(z))
                , le(s(x), 0()) -> false()
                , le(0(), y) -> true()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {12}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [0] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16() = [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isempty^#(nil()) -> c_11()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isempty^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                isempty^#(x1) = [1] x1 + [7]
                c_11() = [1]
           
           * Path {13}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [0] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16() = [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {isempty^#(cons(x, xs)) -> c_12()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(isempty^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0] x1 + [0] x2 + [7]
                isempty^#(x1) = [1] x1 + [7]
                c_12() = [1]
           
           * Path {14}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [0] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16() = [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {head^#(nil()) -> c_13()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(head^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                head^#(x1) = [1] x1 + [7]
                c_13() = [1]
           
           * Path {15}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [0] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16() = [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {head^#(cons(x, xs)) -> c_14()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(head^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0] x1 + [0] x2 + [7]
                head^#(x1) = [1] x1 + [7]
                c_14() = [1]
           
           * Path {16}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [0] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16() = [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {tail^#(nil()) -> c_15()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                tail^#(x1) = [1] x1 + [7]
                c_15() = [1]
           
           * Path {17}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [0] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16() = [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {tail^#(cons(x, xs)) -> c_16()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0] x1 + [0] x2 + [7]
                tail^#(x1) = [1] x1 + [7]
                c_16() = [1]
           
           * Path {18}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [0] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16() = [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a^#() -> c_17()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a^#() = [7]
                c_17() = [0]
           
           * Path {19}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_3) = {},
                 Uargs(le^#) = {}, Uargs(c_6) = {}, Uargs(sum^#) = {},
                 Uargs(c_7) = {}, Uargs(sumIter^#) = {}, Uargs(c_8) = {},
                 Uargs(ifSum^#) = {}, Uargs(c_10) = {}, Uargs(isempty^#) = {},
                 Uargs(head^#) = {}, Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [0] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2() = [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9() = [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14() = [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16() = [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a^#() -> c_18()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a^#() = [7]
                c_18() = [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputSecret 07 TRS aprove07

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputSecret 07 TRS aprove07

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  plus(x, y) -> plusIter(x, y, 0())
     , plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z)
     , ifPlus(true(), x, y, z) -> y
     , ifPlus(false(), x, y, z) -> plusIter(x, s(y), s(z))
     , le(s(x), 0()) -> false()
     , le(0(), y) -> true()
     , le(s(x), s(y)) -> le(x, y)
     , sum(xs) -> sumIter(xs, 0())
     , sumIter(xs, x) -> ifSum(isempty(xs), xs, x, plus(x, head(xs)))
     , ifSum(true(), xs, x, y) -> x
     , ifSum(false(), xs, x, y) -> sumIter(tail(xs), y)
     , isempty(nil()) -> true()
     , isempty(cons(x, xs)) -> false()
     , head(nil()) -> error()
     , head(cons(x, xs)) -> x
     , tail(nil()) -> nil()
     , tail(cons(x, xs)) -> xs
     , a() -> b()
     , a() -> c()}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(x, y) -> c_0(plusIter^#(x, y, 0()))
              , 2: plusIter^#(x, y, z) -> c_1(ifPlus^#(le(x, z), x, y, z))
              , 3: ifPlus^#(true(), x, y, z) -> c_2(y)
              , 4: ifPlus^#(false(), x, y, z) -> c_3(plusIter^#(x, s(y), s(z)))
              , 5: le^#(s(x), 0()) -> c_4()
              , 6: le^#(0(), y) -> c_5()
              , 7: le^#(s(x), s(y)) -> c_6(le^#(x, y))
              , 8: sum^#(xs) -> c_7(sumIter^#(xs, 0()))
              , 9: sumIter^#(xs, x) ->
                   c_8(ifSum^#(isempty(xs), xs, x, plus(x, head(xs))))
              , 10: ifSum^#(true(), xs, x, y) -> c_9(x)
              , 11: ifSum^#(false(), xs, x, y) -> c_10(sumIter^#(tail(xs), y))
              , 12: isempty^#(nil()) -> c_11()
              , 13: isempty^#(cons(x, xs)) -> c_12()
              , 14: head^#(nil()) -> c_13()
              , 15: head^#(cons(x, xs)) -> c_14(x)
              , 16: tail^#(nil()) -> c_15()
              , 17: tail^#(cons(x, xs)) -> c_16(xs)
              , 18: a^#() -> c_17()
              , 19: a^#() -> c_18()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{19}                                                      [    YES(?,O(1))     ]
             
             ->{18}                                                      [    YES(?,O(1))     ]
             
             ->{17}                                                      [   YES(?,O(n^3))    ]
             
             ->{16}                                                      [    YES(?,O(1))     ]
             
             ->{15}                                                      [   YES(?,O(n^3))    ]
             
             ->{14}                                                      [    YES(?,O(1))     ]
             
             ->{13}                                                      [    YES(?,O(1))     ]
             
             ->{12}                                                      [    YES(?,O(1))     ]
             
             ->{8}                                                       [     inherited      ]
                |
                `->{9,11}                                                [     inherited      ]
                    |
                    `->{10}                                              [         NA         ]
             
             ->{7}                                                       [   YES(?,O(n^1))    ]
                |
                |->{5}                                                   [   YES(?,O(n^3))    ]
                |
                `->{6}                                                   [   YES(?,O(n^2))    ]
             
             ->{1}                                                       [     inherited      ]
                |
                `->{2,4}                                                 [       MAYBE        ]
                    |
                    `->{3}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2,4}.
           
           * Path {1}->{2,4}: MAYBE
             ----------------------
             
             The usable rules for this path are:
             
               {  le(s(x), 0()) -> false()
                , le(0(), y) -> true()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  plus^#(x, y) -> c_0(plusIter^#(x, y, 0()))
                  , plusIter^#(x, y, z) -> c_1(ifPlus^#(le(x, z), x, y, z))
                  , ifPlus^#(false(), x, y, z) -> c_3(plusIter^#(x, s(y), s(z)))
                  , le(s(x), 0()) -> false()
                  , le(0(), y) -> true()
                  , le(s(x), s(y)) -> le(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1}->{2,4}->{3}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  le(s(x), 0()) -> false()
                , le(0(), y) -> true()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {1}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {1}, Uargs(ifPlus^#) = {1}, Uargs(c_2) = {},
                 Uargs(c_3) = {1}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [1 0 0] x1 + [0 0 0] x2 + [2]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [1]
                         [0]
                         [0]
                false() = [1]
                          [0]
                          [0]
                s(x1) = [1 0 0] x1 + [2]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                ifPlus^#(x1, x2, x3, x4) = [3 0 0] x1 + [3 3 3] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [3 3 3]      [3 3 3]      [0]
                               [3 3 3]      [3 3 3]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), s(y)) -> c_6(le^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [2]
                        [0 0 2]      [2]
                        [0 0 0]      [0]
                le^#(x1, x2) = [1 0 0] x1 + [5 0 0] x2 + [0]
                               [2 2 0]      [0 2 0]      [0]
                               [4 0 0]      [0 2 0]      [0]
                c_6(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
           
           * Path {7}->{5}: YES(?,O(n^3))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), 0()) -> c_4()}
               Weak Rules: {le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [0]
                      [0]
                s(x1) = [1 3 2] x1 + [2]
                        [0 1 2]      [0]
                        [0 0 1]      [2]
                le^#(x1, x2) = [2 2 0] x1 + [0 1 0] x2 + [0]
                               [0 0 0]      [0 0 2]      [0]
                               [0 1 0]      [0 2 4]      [0]
                c_4() = [1]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [3]
                          [0 0 0]      [0]
                          [0 0 0]      [6]
           
           * Path {7}->{6}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(0(), y) -> c_5()}
               Weak Rules: {le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 4 2] x1 + [0]
                        [0 0 2]      [0]
                        [0 0 1]      [0]
                le^#(x1, x2) = [2 2 2] x1 + [2 0 0] x2 + [0]
                               [2 2 2]      [0 0 4]      [0]
                               [2 2 2]      [0 0 0]      [0]
                c_5() = [1]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{9,11}->{10}.
           
           * Path {8}->{9,11}: inherited
             ---------------------------
             
             This path is subsumed by the proof of path {8}->{9,11}->{10}.
           
           * Path {8}->{9,11}->{10}: NA
             --------------------------
             
             The usable rules for this path are:
             
               {  plus(x, y) -> plusIter(x, y, 0())
                , isempty(nil()) -> true()
                , isempty(cons(x, xs)) -> false()
                , head(nil()) -> error()
                , head(cons(x, xs)) -> x
                , tail(nil()) -> nil()
                , tail(cons(x, xs)) -> xs
                , plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z)
                , ifPlus(true(), x, y, z) -> y
                , ifPlus(false(), x, y, z) -> plusIter(x, s(y), s(z))
                , le(s(x), 0()) -> false()
                , le(0(), y) -> true()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {12}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isempty^#(nil()) -> c_11()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isempty^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                isempty^#(x1) = [0 2 0] x1 + [7]
                                [2 2 0]      [3]
                                [2 2 2]      [3]
                c_11() = [0]
                         [1]
                         [1]
           
           * Path {13}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isempty^#(cons(x, xs)) -> c_12()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(isempty^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [2]
                               [0 0 0]      [0 0 0]      [2]
                               [0 0 0]      [0 0 0]      [2]
                isempty^#(x1) = [0 2 0] x1 + [7]
                                [2 2 0]      [3]
                                [2 2 2]      [3]
                c_12() = [0]
                         [1]
                         [1]
           
           * Path {14}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {head^#(nil()) -> c_13()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(head^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                head^#(x1) = [0 2 0] x1 + [7]
                             [2 2 0]      [3]
                             [2 2 2]      [3]
                c_13() = [0]
                         [1]
                         [1]
           
           * Path {15}: YES(?,O(n^3))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [1 3 3] x1 + [0 0 0] x2 + [0]
                               [0 1 1]      [0 0 0]      [0]
                               [0 0 1]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [1 3 3] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [1 0 1] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {head^#(cons(x, xs)) -> c_14(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(head^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [1 2 2] x1 + [0 0 0] x2 + [2]
                               [0 0 2]      [0 0 0]      [2]
                               [0 0 0]      [0 0 0]      [2]
                head^#(x1) = [2 2 2] x1 + [3]
                             [2 2 2]      [3]
                             [2 2 2]      [3]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [1]
                           [0 0 0]      [1]
           
           * Path {16}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {tail^#(nil()) -> c_15()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                tail^#(x1) = [0 2 0] x1 + [7]
                             [2 2 0]      [3]
                             [2 2 2]      [3]
                c_15() = [0]
                         [1]
                         [1]
           
           * Path {17}: YES(?,O(n^3))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [1 3 3] x1 + [0 0 0] x2 + [0]
                               [0 1 1]      [0 0 0]      [0]
                               [0 0 1]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail^#(x1) = [1 3 3] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16(x1) = [1 0 1] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {tail^#(cons(x, xs)) -> c_16(xs)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0 0] x1 + [1 2 2] x2 + [2]
                               [0 0 0]      [0 0 2]      [2]
                               [0 0 0]      [0 0 0]      [2]
                tail^#(x1) = [2 2 2] x1 + [3]
                             [2 2 2]      [3]
                             [2 2 2]      [3]
                c_16(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [1]
                           [0 0 0]      [1]
           
           * Path {18}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a^#() -> c_17()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a^#() = [7]
                        [7]
                        [7]
                c_17() = [0]
                         [3]
                         [3]
           
           * Path {19}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                plusIter(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                       [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                le(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                             [0 0 0]      [0 0 0]      [0]
                             [0 0 0]      [0 0 0]      [0]
                true() = [0]
                         [0]
                         [0]
                false() = [0]
                          [0]
                          [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                sum(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                  [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                        [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                isempty(x1) = [0 0 0] x1 + [0]
                              [0 0 0]      [0]
                              [0 0 0]      [0]
                head(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                nil() = [0]
                        [0]
                        [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                error() = [0]
                          [0]
                          [0]
                a() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                plus^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                 [0 0 0]      [0 0 0]      [0]
                                 [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                         [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                           [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                le^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sum^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_7(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                sumIter^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                    [0 0 0]      [0 0 0]      [0]
                                    [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                          [0 0 0]      [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_9(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_10(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                isempty^#(x1) = [0 0 0] x1 + [0]
                                [0 0 0]      [0]
                                [0 0 0]      [0]
                c_11() = [0]
                         [0]
                         [0]
                c_12() = [0]
                         [0]
                         [0]
                head^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_13() = [0]
                         [0]
                         [0]
                c_14(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                tail^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_15() = [0]
                         [0]
                         [0]
                c_16(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                a^#() = [0]
                        [0]
                        [0]
                c_17() = [0]
                         [0]
                         [0]
                c_18() = [0]
                         [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a^#() -> c_18()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a^#() = [7]
                        [7]
                        [7]
                c_18() = [0]
                         [3]
                         [3]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(x, y) -> c_0(plusIter^#(x, y, 0()))
              , 2: plusIter^#(x, y, z) -> c_1(ifPlus^#(le(x, z), x, y, z))
              , 3: ifPlus^#(true(), x, y, z) -> c_2(y)
              , 4: ifPlus^#(false(), x, y, z) -> c_3(plusIter^#(x, s(y), s(z)))
              , 5: le^#(s(x), 0()) -> c_4()
              , 6: le^#(0(), y) -> c_5()
              , 7: le^#(s(x), s(y)) -> c_6(le^#(x, y))
              , 8: sum^#(xs) -> c_7(sumIter^#(xs, 0()))
              , 9: sumIter^#(xs, x) ->
                   c_8(ifSum^#(isempty(xs), xs, x, plus(x, head(xs))))
              , 10: ifSum^#(true(), xs, x, y) -> c_9(x)
              , 11: ifSum^#(false(), xs, x, y) -> c_10(sumIter^#(tail(xs), y))
              , 12: isempty^#(nil()) -> c_11()
              , 13: isempty^#(cons(x, xs)) -> c_12()
              , 14: head^#(nil()) -> c_13()
              , 15: head^#(cons(x, xs)) -> c_14(x)
              , 16: tail^#(nil()) -> c_15()
              , 17: tail^#(cons(x, xs)) -> c_16(xs)
              , 18: a^#() -> c_17()
              , 19: a^#() -> c_18()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{19}                                                      [    YES(?,O(1))     ]
             
             ->{18}                                                      [    YES(?,O(1))     ]
             
             ->{17}                                                      [   YES(?,O(n^2))    ]
             
             ->{16}                                                      [    YES(?,O(1))     ]
             
             ->{15}                                                      [   YES(?,O(n^2))    ]
             
             ->{14}                                                      [    YES(?,O(1))     ]
             
             ->{13}                                                      [    YES(?,O(1))     ]
             
             ->{12}                                                      [    YES(?,O(1))     ]
             
             ->{8}                                                       [     inherited      ]
                |
                `->{9,11}                                                [     inherited      ]
                    |
                    `->{10}                                              [         NA         ]
             
             ->{7}                                                       [   YES(?,O(n^2))    ]
                |
                |->{5}                                                   [   YES(?,O(n^1))    ]
                |
                `->{6}                                                   [   YES(?,O(n^2))    ]
             
             ->{1}                                                       [     inherited      ]
                |
                `->{2,4}                                                 [       MAYBE        ]
                    |
                    `->{3}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2,4}.
           
           * Path {1}->{2,4}: MAYBE
             ----------------------
             
             The usable rules for this path are:
             
               {  le(s(x), 0()) -> false()
                , le(0(), y) -> true()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  plus^#(x, y) -> c_0(plusIter^#(x, y, 0()))
                  , plusIter^#(x, y, z) -> c_1(ifPlus^#(le(x, z), x, y, z))
                  , ifPlus^#(false(), x, y, z) -> c_3(plusIter^#(x, s(y), s(z)))
                  , le(s(x), 0()) -> false()
                  , le(0(), y) -> true()
                  , le(s(x), s(y)) -> le(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1}->{2,4}->{3}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  le(s(x), 0()) -> false()
                , le(0(), y) -> true()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {1}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {1}, Uargs(ifPlus^#) = {1}, Uargs(c_2) = {},
                 Uargs(c_3) = {1}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [1 0] x1 + [0 0] x2 + [2]
                             [0 0]      [0 0]      [3]
                true() = [1]
                         [1]
                false() = [1]
                          [1]
                s(x1) = [1 0] x1 + [2]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                ifPlus^#(x1, x2, x3, x4) = [3 0] x1 + [3 3] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                               [3 3]      [3 3]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), s(y)) -> c_6(le^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2] x1 + [1]
                        [0 1]      [2]
                le^#(x1, x2) = [4 1] x1 + [1 2] x2 + [0]
                               [0 2]      [0 0]      [0]
                c_6(x1) = [1 2] x1 + [5]
                          [0 0]      [3]
           
           * Path {7}->{5}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), 0()) -> c_4()}
               Weak Rules: {le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [0]
                      [0]
                s(x1) = [1 4] x1 + [2]
                        [0 0]      [0]
                le^#(x1, x2) = [2 0] x1 + [2 0] x2 + [0]
                               [0 0]      [0 2]      [0]
                c_4() = [1]
                        [0]
                c_6(x1) = [1 2] x1 + [3]
                          [0 0]      [0]
           
           * Path {7}->{6}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(0(), y) -> c_5()}
               Weak Rules: {le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [1 2] x1 + [2]
                        [0 1]      [0]
                le^#(x1, x2) = [3 3] x1 + [4 0] x2 + [0]
                               [4 1]      [2 0]      [0]
                c_5() = [1]
                        [0]
                c_6(x1) = [1 0] x1 + [3]
                          [0 0]      [7]
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{9,11}->{10}.
           
           * Path {8}->{9,11}: inherited
             ---------------------------
             
             This path is subsumed by the proof of path {8}->{9,11}->{10}.
           
           * Path {8}->{9,11}->{10}: NA
             --------------------------
             
             The usable rules for this path are:
             
               {  plus(x, y) -> plusIter(x, y, 0())
                , isempty(nil()) -> true()
                , isempty(cons(x, xs)) -> false()
                , head(nil()) -> error()
                , head(cons(x, xs)) -> x
                , tail(nil()) -> nil()
                , tail(cons(x, xs)) -> xs
                , plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z)
                , ifPlus(true(), x, y, z) -> y
                , ifPlus(false(), x, y, z) -> plusIter(x, s(y), s(z))
                , le(s(x), 0()) -> false()
                , le(0(), y) -> true()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {12}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isempty^#(nil()) -> c_11()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isempty^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                isempty^#(x1) = [2 0] x1 + [7]
                                [2 2]      [7]
                c_11() = [0]
                         [1]
           
           * Path {13}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isempty^#(cons(x, xs)) -> c_12()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(isempty^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [2]
                               [0 0]      [0 0]      [2]
                isempty^#(x1) = [2 0] x1 + [7]
                                [2 2]      [7]
                c_12() = [0]
                         [1]
           
           * Path {14}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {head^#(nil()) -> c_13()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(head^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                head^#(x1) = [2 0] x1 + [7]
                             [2 2]      [7]
                c_13() = [0]
                         [1]
           
           * Path {15}: YES(?,O(n^2))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [1 1] x1 + [0 0] x2 + [0]
                               [0 1]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [3 3] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {head^#(cons(x, xs)) -> c_14(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(head^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [1 2] x1 + [0 0] x2 + [2]
                               [0 0]      [0 0]      [2]
                head^#(x1) = [2 2] x1 + [7]
                             [2 0]      [7]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [1]
           
           * Path {16}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {tail^#(nil()) -> c_15()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                tail^#(x1) = [2 0] x1 + [7]
                             [2 2]      [7]
                c_15() = [0]
                         [1]
           
           * Path {17}: YES(?,O(n^2))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [1 1] x1 + [0 0] x2 + [0]
                               [0 1]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail^#(x1) = [3 3] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16(x1) = [1 0] x1 + [0]
                           [0 0]      [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {tail^#(cons(x, xs)) -> c_16(xs)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0] x1 + [1 2] x2 + [2]
                               [0 0]      [0 0]      [2]
                tail^#(x1) = [2 2] x1 + [7]
                             [2 0]      [7]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [1]
           
           * Path {18}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a^#() -> c_17()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a^#() = [7]
                        [7]
                c_17() = [0]
                         [1]
           
           * Path {19}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                plusIter(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                       [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                ifPlus(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                         [0 0]      [0 0]      [0 0]      [0 0]      [0]
                le(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                             [0 0]      [0 0]      [0]
                true() = [0]
                         [0]
                false() = [0]
                          [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                sum(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                  [0 0]      [0 0]      [0]
                ifSum(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                        [0 0]      [0 0]      [0 0]      [0 0]      [0]
                isempty(x1) = [0 0] x1 + [0]
                              [0 0]      [0]
                head(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                nil() = [0]
                        [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                error() = [0]
                          [0]
                a() = [0]
                      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                plus^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                 [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                plusIter^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                         [0 0]      [0 0]      [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifPlus^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                           [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                le^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                c_4() = [0]
                        [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sum^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_7(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                sumIter^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                    [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                ifSum^#(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0 0] x4 + [0]
                                          [0 0]      [0 0]      [0 0]      [0 0]      [0]
                c_9(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_10(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                isempty^#(x1) = [0 0] x1 + [0]
                                [0 0]      [0]
                c_11() = [0]
                         [0]
                c_12() = [0]
                         [0]
                head^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_13() = [0]
                         [0]
                c_14(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                tail^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_15() = [0]
                         [0]
                c_16(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                a^#() = [0]
                        [0]
                c_17() = [0]
                         [0]
                c_18() = [0]
                         [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a^#() -> c_18()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a^#() = [7]
                        [7]
                c_18() = [0]
                         [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: plus^#(x, y) -> c_0(plusIter^#(x, y, 0()))
              , 2: plusIter^#(x, y, z) -> c_1(ifPlus^#(le(x, z), x, y, z))
              , 3: ifPlus^#(true(), x, y, z) -> c_2(y)
              , 4: ifPlus^#(false(), x, y, z) -> c_3(plusIter^#(x, s(y), s(z)))
              , 5: le^#(s(x), 0()) -> c_4()
              , 6: le^#(0(), y) -> c_5()
              , 7: le^#(s(x), s(y)) -> c_6(le^#(x, y))
              , 8: sum^#(xs) -> c_7(sumIter^#(xs, 0()))
              , 9: sumIter^#(xs, x) ->
                   c_8(ifSum^#(isempty(xs), xs, x, plus(x, head(xs))))
              , 10: ifSum^#(true(), xs, x, y) -> c_9(x)
              , 11: ifSum^#(false(), xs, x, y) -> c_10(sumIter^#(tail(xs), y))
              , 12: isempty^#(nil()) -> c_11()
              , 13: isempty^#(cons(x, xs)) -> c_12()
              , 14: head^#(nil()) -> c_13()
              , 15: head^#(cons(x, xs)) -> c_14(x)
              , 16: tail^#(nil()) -> c_15()
              , 17: tail^#(cons(x, xs)) -> c_16(xs)
              , 18: a^#() -> c_17()
              , 19: a^#() -> c_18()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{19}                                                      [    YES(?,O(1))     ]
             
             ->{18}                                                      [    YES(?,O(1))     ]
             
             ->{17}                                                      [   YES(?,O(n^1))    ]
             
             ->{16}                                                      [    YES(?,O(1))     ]
             
             ->{15}                                                      [   YES(?,O(n^1))    ]
             
             ->{14}                                                      [    YES(?,O(1))     ]
             
             ->{13}                                                      [    YES(?,O(1))     ]
             
             ->{12}                                                      [    YES(?,O(1))     ]
             
             ->{8}                                                       [     inherited      ]
                |
                `->{9,11}                                                [     inherited      ]
                    |
                    `->{10}                                              [         NA         ]
             
             ->{7}                                                       [   YES(?,O(n^1))    ]
                |
                |->{5}                                                   [   YES(?,O(n^1))    ]
                |
                `->{6}                                                   [   YES(?,O(n^1))    ]
             
             ->{1}                                                       [     inherited      ]
                |
                `->{2,4}                                                 [       MAYBE        ]
                    |
                    `->{3}                                               [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: inherited
             -------------------
             
             This path is subsumed by the proof of path {1}->{2,4}.
           
           * Path {1}->{2,4}: MAYBE
             ----------------------
             
             The usable rules for this path are:
             
               {  le(s(x), 0()) -> false()
                , le(0(), y) -> true()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  plus^#(x, y) -> c_0(plusIter^#(x, y, 0()))
                  , plusIter^#(x, y, z) -> c_1(ifPlus^#(le(x, z), x, y, z))
                  , ifPlus^#(false(), x, y, z) -> c_3(plusIter^#(x, s(y), s(z)))
                  , le(s(x), 0()) -> false()
                  , le(0(), y) -> true()
                  , le(s(x), s(y)) -> le(x, y)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1}->{2,4}->{3}: NA
             ------------------------
             
             The usable rules for this path are:
             
               {  le(s(x), 0()) -> false()
                , le(0(), y) -> true()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {1}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {1}, Uargs(ifPlus^#) = {1}, Uargs(c_2) = {},
                 Uargs(c_3) = {1}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [2] x2 + [1]
                true() = [0]
                false() = [0]
                s(x1) = [1] x1 + [2]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [1] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [3] x1 + [3] x2 + [0] x3 + [0] x4 + [0]
                c_2(x1) = [1] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16(x1) = [0] x1 + [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [1] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16(x1) = [0] x1 + [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), s(y)) -> c_6(le^#(x, y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1] x1 + [2]
                le^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_6(x1) = [1] x1 + [7]
           
           * Path {7}->{5}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [0] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16(x1) = [0] x1 + [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(s(x), 0()) -> c_4()}
               Weak Rules: {le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                le^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_4() = [1]
                c_6(x1) = [1] x1 + [7]
           
           * Path {7}->{6}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [0] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16(x1) = [0] x1 + [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {le^#(0(), y) -> c_5()}
               Weak Rules: {le^#(s(x), s(y)) -> c_6(le^#(x, y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(le^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [2]
                le^#(x1, x2) = [2] x1 + [0] x2 + [4]
                c_5() = [1]
                c_6(x1) = [1] x1 + [2]
           
           * Path {8}: inherited
             -------------------
             
             This path is subsumed by the proof of path {8}->{9,11}->{10}.
           
           * Path {8}->{9,11}: inherited
             ---------------------------
             
             This path is subsumed by the proof of path {8}->{9,11}->{10}.
           
           * Path {8}->{9,11}->{10}: NA
             --------------------------
             
             The usable rules for this path are:
             
               {  plus(x, y) -> plusIter(x, y, 0())
                , isempty(nil()) -> true()
                , isempty(cons(x, xs)) -> false()
                , head(nil()) -> error()
                , head(cons(x, xs)) -> x
                , tail(nil()) -> nil()
                , tail(cons(x, xs)) -> xs
                , plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z)
                , ifPlus(true(), x, y, z) -> y
                , ifPlus(false(), x, y, z) -> plusIter(x, s(y), s(z))
                , le(s(x), 0()) -> false()
                , le(0(), y) -> true()
                , le(s(x), s(y)) -> le(x, y)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {12}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [0] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16(x1) = [0] x1 + [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isempty^#(nil()) -> c_11()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(isempty^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                isempty^#(x1) = [1] x1 + [7]
                c_11() = [1]
           
           * Path {13}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [0] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16(x1) = [0] x1 + [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {isempty^#(cons(x, xs)) -> c_12()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(isempty^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0] x1 + [0] x2 + [7]
                isempty^#(x1) = [1] x1 + [7]
                c_12() = [1]
           
           * Path {14}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [0] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16(x1) = [0] x1 + [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {head^#(nil()) -> c_13()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(head^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                head^#(x1) = [1] x1 + [7]
                c_13() = [1]
           
           * Path {15}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [0] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [1] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [3] x1 + [0]
                c_13() = [0]
                c_14(x1) = [1] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16(x1) = [0] x1 + [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {head^#(cons(x, xs)) -> c_14(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(head^#) = {}, Uargs(c_14) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [1] x1 + [0] x2 + [7]
                head^#(x1) = [1] x1 + [7]
                c_14(x1) = [1] x1 + [1]
           
           * Path {16}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [0] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16(x1) = [0] x1 + [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {tail^#(nil()) -> c_15()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(tail^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [7]
                tail^#(x1) = [1] x1 + [7]
                c_15() = [1]
           
           * Path {17}: YES(?,O(n^1))
             ------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [0] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [1] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                tail^#(x1) = [3] x1 + [0]
                c_15() = [0]
                c_16(x1) = [1] x1 + [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {tail^#(cons(x, xs)) -> c_16(xs)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0] x1 + [1] x2 + [7]
                tail^#(x1) = [1] x1 + [7]
                c_16(x1) = [1] x1 + [1]
           
           * Path {18}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [0] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16(x1) = [0] x1 + [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a^#() -> c_17()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a^#() = [7]
                c_17() = [0]
           
           * Path {19}: YES(?,O(1))
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(plus) = {}, Uargs(plusIter) = {}, Uargs(ifPlus) = {},
                 Uargs(le) = {}, Uargs(s) = {}, Uargs(sum) = {},
                 Uargs(sumIter) = {}, Uargs(ifSum) = {}, Uargs(isempty) = {},
                 Uargs(head) = {}, Uargs(tail) = {}, Uargs(cons) = {},
                 Uargs(plus^#) = {}, Uargs(c_0) = {}, Uargs(plusIter^#) = {},
                 Uargs(c_1) = {}, Uargs(ifPlus^#) = {}, Uargs(c_2) = {},
                 Uargs(c_3) = {}, Uargs(le^#) = {}, Uargs(c_6) = {},
                 Uargs(sum^#) = {}, Uargs(c_7) = {}, Uargs(sumIter^#) = {},
                 Uargs(c_8) = {}, Uargs(ifSum^#) = {}, Uargs(c_9) = {},
                 Uargs(c_10) = {}, Uargs(isempty^#) = {}, Uargs(head^#) = {},
                 Uargs(c_14) = {}, Uargs(tail^#) = {}, Uargs(c_16) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                plus(x1, x2) = [0] x1 + [0] x2 + [0]
                plusIter(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                ifPlus(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                le(x1, x2) = [0] x1 + [0] x2 + [0]
                true() = [0]
                false() = [0]
                s(x1) = [0] x1 + [0]
                sum(x1) = [0] x1 + [0]
                sumIter(x1, x2) = [0] x1 + [0] x2 + [0]
                ifSum(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                isempty(x1) = [0] x1 + [0]
                head(x1) = [0] x1 + [0]
                tail(x1) = [0] x1 + [0]
                nil() = [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                error() = [0]
                a() = [0]
                b() = [0]
                c() = [0]
                plus^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                plusIter^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_1(x1) = [0] x1 + [0]
                ifPlus^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                le^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_4() = [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
                sum^#(x1) = [0] x1 + [0]
                c_7(x1) = [0] x1 + [0]
                sumIter^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_8(x1) = [0] x1 + [0]
                ifSum^#(x1, x2, x3, x4) = [0] x1 + [0] x2 + [0] x3 + [0] x4 + [0]
                c_9(x1) = [0] x1 + [0]
                c_10(x1) = [0] x1 + [0]
                isempty^#(x1) = [0] x1 + [0]
                c_11() = [0]
                c_12() = [0]
                head^#(x1) = [0] x1 + [0]
                c_13() = [0]
                c_14(x1) = [0] x1 + [0]
                tail^#(x1) = [0] x1 + [0]
                c_15() = [0]
                c_16(x1) = [0] x1 + [0]
                a^#() = [0]
                c_17() = [0]
                c_18() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a^#() -> c_18()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a^#() = [7]
                c_18() = [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.