Problem Strategy outermost added 08 Ex24 GM04 GM

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputStrategy outermost added 08 Ex24 GM04 GM

stdout:

MAYBE

Problem:
 a__f(X,g(X),Y) -> a__f(Y,Y,Y)
 a__g(b()) -> c()
 a__b() -> c()
 mark(f(X1,X2,X3)) -> a__f(X1,X2,X3)
 mark(g(X)) -> a__g(mark(X))
 mark(b()) -> a__b()
 mark(c()) -> c()
 a__f(X1,X2,X3) -> f(X1,X2,X3)
 a__g(X) -> g(X)
 a__b() -> b()

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputStrategy outermost added 08 Ex24 GM04 GM

stdout:

MAYBE
 Warning when parsing problem:
                             
                               Unsupported strategy 'OUTERMOST'

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputStrategy outermost added 08 Ex24 GM04 GM

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  a__f(X, g(X), Y) -> a__f(Y, Y, Y)
     , a__g(b()) -> c()
     , a__b() -> c()
     , mark(f(X1, X2, X3)) -> a__f(X1, X2, X3)
     , mark(g(X)) -> a__g(mark(X))
     , mark(b()) -> a__b()
     , mark(c()) -> c()
     , a__f(X1, X2, X3) -> f(X1, X2, X3)
     , a__g(X) -> g(X)
     , a__b() -> b()}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: a__f^#(X, g(X), Y) -> c_0(a__f^#(Y, Y, Y))
              , 2: a__g^#(b()) -> c_1()
              , 3: a__b^#() -> c_2()
              , 4: mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))
              , 5: mark^#(g(X)) -> c_4(a__g^#(mark(X)))
              , 6: mark^#(b()) -> c_5(a__b^#())
              , 7: mark^#(c()) -> c_6()
              , 8: a__f^#(X1, X2, X3) -> c_7()
              , 9: a__g^#(X) -> c_8()
              , 10: a__b^#() -> c_9()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
                |
                |->{3}                                                   [    YES(?,O(1))     ]
                |
                `->{10}                                                  [    YES(?,O(1))     ]
             
             ->{5}                                                       [     inherited      ]
                |
                |->{2}                                                   [         NA         ]
                |
                `->{9}                                                   [         NA         ]
             
             ->{4}                                                       [   YES(?,O(n^2))    ]
                |
                |->{1}                                                   [       MAYBE        ]
                |   |
                |   `->{8}                                               [         NA         ]
                |
                `->{8}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {4}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a__g(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                a__b() = [0]
                         [0]
                         [0]
                mark(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f(x1, x2, x3) = [1 0 0] x1 + [1 0 0] x2 + [1 0 0] x3 + [0]
                                [0 0 0]      [0 1 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                a__f^#(x1, x2, x3) = [3 0 0] x1 + [3 0 0] x2 + [3 0 0] x3 + [0]
                                     [3 0 0]      [3 0 0]      [3 0 0]      [0]
                                     [3 0 0]      [3 0 0]      [3 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                a__g^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                a__b^#() = [0]
                           [0]
                           [0]
                c_2() = [0]
                        [0]
                        [0]
                mark^#(x1) = [0 1 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(a__f^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [1 2 0] x1 + [1 3 0] x2 + [1 2 0] x3 + [0]
                                [0 1 0]      [0 0 2]      [0 1 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [4]
                a__f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 2 0]      [0 1 0]      [0 0 0]      [2]
                                     [0 2 0]      [0 3 0]      [0 0 0]      [0]
                mark^#(x1) = [3 2 0] x1 + [7]
                             [4 2 0]      [7]
                             [1 0 2]      [7]
                c_3(x1) = [0 2 2] x1 + [1]
                          [0 0 0]      [3]
                          [0 0 0]      [7]
           
           * Path {4}->{1}: MAYBE
             --------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {1}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a__g(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                a__b() = [0]
                         [0]
                         [0]
                mark(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                a__f^#(x1, x2, x3) = [1 1 1] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [3 3 3]      [3 3 3]      [3 3 3]      [0]
                                     [3 3 3]      [3 3 3]      [3 3 3]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                a__g^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                a__b^#() = [0]
                           [0]
                           [0]
                c_2() = [0]
                        [0]
                        [0]
                mark^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a__f^#(X, g(X), Y) -> c_0(a__f^#(Y, Y, Y))}
               Weak Rules: {mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}->{1}->{8}: NA
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {1}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a__g(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                a__b() = [0]
                         [0]
                         [0]
                mark(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                a__f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                a__g^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                a__b^#() = [0]
                           [0]
                           [0]
                c_2() = [0]
                        [0]
                        [0]
                mark^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{8}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a__g(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                a__b() = [0]
                         [0]
                         [0]
                mark(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                a__f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                a__g^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                a__b^#() = [0]
                           [0]
                           [0]
                c_2() = [0]
                        [0]
                        [0]
                mark^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a__f^#(X1, X2, X3) -> c_7()}
               Weak Rules: {mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(a__f^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [1 2 1] x1 + [1 2 2] x2 + [1 0 0] x3 + [2]
                                [0 1 0]      [0 1 2]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [2]
                a__f^#(x1, x2, x3) = [0 2 0] x1 + [0 2 2] x2 + [0 0 0] x3 + [2]
                                     [0 0 0]      [0 2 0]      [0 0 0]      [0]
                                     [0 0 2]      [0 0 0]      [0 0 0]      [2]
                mark^#(x1) = [2 4 2] x1 + [7]
                             [3 3 0]      [5]
                             [6 1 0]      [3]
                c_3(x1) = [2 0 0] x1 + [7]
                          [2 0 0]      [2]
                          [2 2 2]      [3]
                c_7() = [1]
                        [0]
                        [0]
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{2}.
           
           * Path {5}->{2}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  mark(f(X1, X2, X3)) -> a__f(X1, X2, X3)
                , mark(g(X)) -> a__g(mark(X))
                , mark(b()) -> a__b()
                , mark(c()) -> c()
                , a__f(X, g(X), Y) -> a__f(Y, Y, Y)
                , a__g(b()) -> c()
                , a__b() -> c()
                , a__f(X1, X2, X3) -> f(X1, X2, X3)
                , a__g(X) -> g(X)
                , a__b() -> b()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}->{9}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  mark(f(X1, X2, X3)) -> a__f(X1, X2, X3)
                , mark(g(X)) -> a__g(mark(X))
                , mark(b()) -> a__b()
                , mark(c()) -> c()
                , a__f(X, g(X), Y) -> a__f(Y, Y, Y)
                , a__g(b()) -> c()
                , a__b() -> c()
                , a__f(X1, X2, X3) -> f(X1, X2, X3)
                , a__g(X) -> g(X)
                , a__b() -> b()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a__g(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                a__b() = [0]
                         [0]
                         [0]
                mark(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                a__f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                a__g^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                a__b^#() = [0]
                           [0]
                           [0]
                c_2() = [0]
                        [0]
                        [0]
                mark^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {mark^#(b()) -> c_5(a__b^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                b() = [2]
                      [2]
                      [2]
                a__b^#() = [2]
                           [2]
                           [0]
                mark^#(x1) = [0 2 2] x1 + [7]
                             [2 2 0]      [7]
                             [0 0 0]      [7]
                c_5(x1) = [2 2 0] x1 + [1]
                          [0 0 0]      [7]
                          [2 0 0]      [3]
           
           * Path {6}->{3}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a__g(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                a__b() = [0]
                         [0]
                         [0]
                mark(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                a__f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                a__g^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                a__b^#() = [0]
                           [0]
                           [0]
                c_2() = [0]
                        [0]
                        [0]
                mark^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a__b^#() -> c_2()}
               Weak Rules: {mark^#(b()) -> c_5(a__b^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                b() = [2]
                      [6]
                      [2]
                a__b^#() = [2]
                           [2]
                           [2]
                c_2() = [1]
                        [0]
                        [0]
                mark^#(x1) = [2 0 2] x1 + [7]
                             [0 2 0]      [3]
                             [2 0 0]      [7]
                c_5(x1) = [2 2 0] x1 + [2]
                          [2 2 2]      [3]
                          [2 2 0]      [3]
           
           * Path {6}->{10}: YES(?,O(1))
             ---------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a__g(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                a__b() = [0]
                         [0]
                         [0]
                mark(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                a__f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                a__g^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                a__b^#() = [0]
                           [0]
                           [0]
                c_2() = [0]
                        [0]
                        [0]
                mark^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a__b^#() -> c_9()}
               Weak Rules: {mark^#(b()) -> c_5(a__b^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                b() = [2]
                      [6]
                      [2]
                a__b^#() = [2]
                           [2]
                           [2]
                mark^#(x1) = [2 0 2] x1 + [7]
                             [0 2 0]      [3]
                             [2 0 0]      [7]
                c_5(x1) = [2 2 0] x1 + [2]
                          [2 2 2]      [3]
                          [2 2 0]      [3]
                c_9() = [1]
                        [0]
                        [0]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a__g(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                a__b() = [0]
                         [0]
                         [0]
                mark(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                a__f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                a__g^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                a__b^#() = [0]
                           [0]
                           [0]
                c_2() = [0]
                        [0]
                        [0]
                mark^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7() = [0]
                        [0]
                        [0]
                c_8() = [0]
                        [0]
                        [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {mark^#(c()) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                c() = [2]
                      [2]
                      [2]
                mark^#(x1) = [0 2 0] x1 + [7]
                             [2 2 0]      [3]
                             [2 2 2]      [3]
                c_6() = [0]
                        [1]
                        [1]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: a__f^#(X, g(X), Y) -> c_0(a__f^#(Y, Y, Y))
              , 2: a__g^#(b()) -> c_1()
              , 3: a__b^#() -> c_2()
              , 4: mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))
              , 5: mark^#(g(X)) -> c_4(a__g^#(mark(X)))
              , 6: mark^#(b()) -> c_5(a__b^#())
              , 7: mark^#(c()) -> c_6()
              , 8: a__f^#(X1, X2, X3) -> c_7()
              , 9: a__g^#(X) -> c_8()
              , 10: a__b^#() -> c_9()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
                |
                |->{3}                                                   [    YES(?,O(1))     ]
                |
                `->{10}                                                  [    YES(?,O(1))     ]
             
             ->{5}                                                       [     inherited      ]
                |
                |->{2}                                                   [         NA         ]
                |
                `->{9}                                                   [         NA         ]
             
             ->{4}                                                       [   YES(?,O(n^2))    ]
                |
                |->{1}                                                   [       MAYBE        ]
                |   |
                |   `->{8}                                               [         NA         ]
                |
                `->{8}                                                   [   YES(?,O(n^2))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {4}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a__g(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                a__b() = [0]
                         [0]
                mark(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [0]
                                [0 1]      [0 1]      [0 1]      [0]
                a__f^#(x1, x2, x3) = [3 0] x1 + [3 0] x2 + [3 0] x3 + [0]
                                     [3 0]      [3 0]      [3 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                a__g^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_1() = [0]
                        [0]
                a__b^#() = [0]
                           [0]
                c_2() = [0]
                        [0]
                mark^#(x1) = [0 1] x1 + [0]
                             [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(a__f^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [1 2] x1 + [1 2] x2 + [1 2] x3 + [2]
                                [0 1]      [0 1]      [0 1]      [2]
                a__f^#(x1, x2, x3) = [0 0] x1 + [0 2] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                mark^#(x1) = [3 3] x1 + [3]
                             [2 5]      [1]
                c_3(x1) = [2 0] x1 + [7]
                          [0 0]      [7]
           
           * Path {4}->{1}: MAYBE
             --------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {1}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a__g(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                a__b() = [0]
                         [0]
                mark(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                a__f^#(x1, x2, x3) = [1 1] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [3 3]      [3 3]      [3 3]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                a__g^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_1() = [0]
                        [0]
                a__b^#() = [0]
                           [0]
                c_2() = [0]
                        [0]
                mark^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a__f^#(X, g(X), Y) -> c_0(a__f^#(Y, Y, Y))}
               Weak Rules: {mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}->{1}->{8}: NA
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {1}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a__g(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                a__b() = [0]
                         [0]
                mark(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                a__f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                a__g^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_1() = [0]
                        [0]
                a__b^#() = [0]
                           [0]
                c_2() = [0]
                        [0]
                mark^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{8}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a__g(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                a__b() = [0]
                         [0]
                mark(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                a__f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                a__g^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_1() = [0]
                        [0]
                a__b^#() = [0]
                           [0]
                c_2() = [0]
                        [0]
                mark^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a__f^#(X1, X2, X3) -> c_7()}
               Weak Rules: {mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(a__f^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [1 2] x1 + [1 2] x2 + [1 1] x3 + [0]
                                [0 1]      [0 1]      [0 1]      [2]
                a__f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [2]
                                     [0 0]      [0 0]      [0 2]      [2]
                mark^#(x1) = [2 7] x1 + [1]
                             [3 2]      [7]
                c_3(x1) = [1 2] x1 + [5]
                          [2 2]      [3]
                c_7() = [1]
                        [0]
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{2}.
           
           * Path {5}->{2}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  mark(f(X1, X2, X3)) -> a__f(X1, X2, X3)
                , mark(g(X)) -> a__g(mark(X))
                , mark(b()) -> a__b()
                , mark(c()) -> c()
                , a__f(X, g(X), Y) -> a__f(Y, Y, Y)
                , a__g(b()) -> c()
                , a__b() -> c()
                , a__f(X1, X2, X3) -> f(X1, X2, X3)
                , a__g(X) -> g(X)
                , a__b() -> b()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}->{9}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  mark(f(X1, X2, X3)) -> a__f(X1, X2, X3)
                , mark(g(X)) -> a__g(mark(X))
                , mark(b()) -> a__b()
                , mark(c()) -> c()
                , a__f(X, g(X), Y) -> a__f(Y, Y, Y)
                , a__g(b()) -> c()
                , a__b() -> c()
                , a__f(X1, X2, X3) -> f(X1, X2, X3)
                , a__g(X) -> g(X)
                , a__b() -> b()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a__g(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                a__b() = [0]
                         [0]
                mark(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                a__f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                a__g^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_1() = [0]
                        [0]
                a__b^#() = [0]
                           [0]
                c_2() = [0]
                        [0]
                mark^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {mark^#(b()) -> c_5(a__b^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                b() = [2]
                      [2]
                a__b^#() = [0]
                           [2]
                mark^#(x1) = [2 2] x1 + [7]
                             [2 0]      [7]
                c_5(x1) = [0 2] x1 + [3]
                          [0 2]      [3]
           
           * Path {6}->{3}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a__g(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                a__b() = [0]
                         [0]
                mark(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                a__f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                a__g^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_1() = [0]
                        [0]
                a__b^#() = [0]
                           [0]
                c_2() = [0]
                        [0]
                mark^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_6() = [0]
                        [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a__b^#() -> c_2()}
               Weak Rules: {mark^#(b()) -> c_5(a__b^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                b() = [2]
                      [2]
                a__b^#() = [2]
                           [2]
                c_2() = [1]
                        [0]
                mark^#(x1) = [0 0] x1 + [7]
                             [1 2]      [7]
                c_5(x1) = [2 0] x1 + [2]
                          [2 2]      [3]
           
           * Path {6}->{10}: YES(?,O(1))
             ---------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a__g(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                a__b() = [0]
                         [0]
                mark(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                a__f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                a__g^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_1() = [0]
                        [0]
                a__b^#() = [0]
                           [0]
                c_2() = [0]
                        [0]
                mark^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_6() = [0]
                        [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a__b^#() -> c_9()}
               Weak Rules: {mark^#(b()) -> c_5(a__b^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                b() = [2]
                      [2]
                a__b^#() = [2]
                           [2]
                mark^#(x1) = [0 0] x1 + [7]
                             [1 2]      [7]
                c_5(x1) = [2 0] x1 + [2]
                          [2 2]      [3]
                c_9() = [1]
                        [0]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a__g(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                a__b() = [0]
                         [0]
                mark(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                a__f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                a__g^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_1() = [0]
                        [0]
                a__b^#() = [0]
                           [0]
                c_2() = [0]
                        [0]
                mark^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7() = [0]
                        [0]
                c_8() = [0]
                        [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {mark^#(c()) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                c() = [2]
                      [2]
                mark^#(x1) = [2 0] x1 + [7]
                             [2 2]      [7]
                c_6() = [0]
                        [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: a__f^#(X, g(X), Y) -> c_0(a__f^#(Y, Y, Y))
              , 2: a__g^#(b()) -> c_1()
              , 3: a__b^#() -> c_2()
              , 4: mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))
              , 5: mark^#(g(X)) -> c_4(a__g^#(mark(X)))
              , 6: mark^#(b()) -> c_5(a__b^#())
              , 7: mark^#(c()) -> c_6()
              , 8: a__f^#(X1, X2, X3) -> c_7()
              , 9: a__g^#(X) -> c_8()
              , 10: a__b^#() -> c_9()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
                |
                |->{3}                                                   [    YES(?,O(1))     ]
                |
                `->{10}                                                  [    YES(?,O(1))     ]
             
             ->{5}                                                       [     inherited      ]
                |
                |->{2}                                                   [         NA         ]
                |
                `->{9}                                                   [         NA         ]
             
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                |->{1}                                                   [       MAYBE        ]
                |   |
                |   `->{8}                                               [         NA         ]
                |
                `->{8}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1) = [0] x1 + [0]
                a__g(x1) = [0] x1 + [0]
                b() = [0]
                c() = [0]
                a__b() = [0]
                mark(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                a__f^#(x1, x2, x3) = [3] x1 + [3] x2 + [3] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                a__g^#(x1) = [0] x1 + [0]
                c_1() = [0]
                a__b^#() = [0]
                c_2() = [0]
                mark^#(x1) = [3] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(a__f^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [2]
                mark^#(x1) = [0] x1 + [7]
                c_3(x1) = [2] x1 + [1]
           
           * Path {4}->{1}: MAYBE
             --------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {1}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1) = [0] x1 + [0]
                a__g(x1) = [0] x1 + [0]
                b() = [0]
                c() = [0]
                a__b() = [0]
                mark(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                a__f^#(x1, x2, x3) = [1] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [1] x1 + [0]
                a__g^#(x1) = [0] x1 + [0]
                c_1() = [0]
                a__b^#() = [0]
                c_2() = [0]
                mark^#(x1) = [0] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a__f^#(X, g(X), Y) -> c_0(a__f^#(Y, Y, Y))}
               Weak Rules: {mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}->{1}->{8}: NA
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {1}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1) = [0] x1 + [0]
                a__g(x1) = [0] x1 + [0]
                b() = [0]
                c() = [0]
                a__b() = [0]
                mark(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [1] x1 + [0]
                a__g^#(x1) = [0] x1 + [0]
                c_1() = [0]
                a__b^#() = [0]
                c_2() = [0]
                mark^#(x1) = [0] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{8}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1) = [0] x1 + [0]
                a__g(x1) = [0] x1 + [0]
                b() = [0]
                c() = [0]
                a__b() = [0]
                mark(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                a__g^#(x1) = [0] x1 + [0]
                c_1() = [0]
                a__b^#() = [0]
                c_2() = [0]
                mark^#(x1) = [0] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a__f^#(X1, X2, X3) -> c_7()}
               Weak Rules: {mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(a__f^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                a__f^#(x1, x2, x3) = [2] x1 + [1] x2 + [0] x3 + [2]
                mark^#(x1) = [4] x1 + [7]
                c_3(x1) = [2] x1 + [3]
                c_7() = [1]
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{2}.
           
           * Path {5}->{2}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  mark(f(X1, X2, X3)) -> a__f(X1, X2, X3)
                , mark(g(X)) -> a__g(mark(X))
                , mark(b()) -> a__b()
                , mark(c()) -> c()
                , a__f(X, g(X), Y) -> a__f(Y, Y, Y)
                , a__g(b()) -> c()
                , a__b() -> c()
                , a__f(X1, X2, X3) -> f(X1, X2, X3)
                , a__g(X) -> g(X)
                , a__b() -> b()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}->{9}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  mark(f(X1, X2, X3)) -> a__f(X1, X2, X3)
                , mark(g(X)) -> a__g(mark(X))
                , mark(b()) -> a__b()
                , mark(c()) -> c()
                , a__f(X, g(X), Y) -> a__f(Y, Y, Y)
                , a__g(b()) -> c()
                , a__b() -> c()
                , a__f(X1, X2, X3) -> f(X1, X2, X3)
                , a__g(X) -> g(X)
                , a__b() -> b()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1) = [0] x1 + [0]
                a__g(x1) = [0] x1 + [0]
                b() = [0]
                c() = [0]
                a__b() = [0]
                mark(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                a__g^#(x1) = [0] x1 + [0]
                c_1() = [0]
                a__b^#() = [0]
                c_2() = [0]
                mark^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {mark^#(b()) -> c_5(a__b^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                b() = [2]
                a__b^#() = [2]
                mark^#(x1) = [2] x1 + [5]
                c_5(x1) = [2] x1 + [3]
           
           * Path {6}->{3}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1) = [0] x1 + [0]
                a__g(x1) = [0] x1 + [0]
                b() = [0]
                c() = [0]
                a__b() = [0]
                mark(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                a__g^#(x1) = [0] x1 + [0]
                c_1() = [0]
                a__b^#() = [0]
                c_2() = [0]
                mark^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [1] x1 + [0]
                c_6() = [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a__b^#() -> c_2()}
               Weak Rules: {mark^#(b()) -> c_5(a__b^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                b() = [0]
                a__b^#() = [2]
                c_2() = [1]
                mark^#(x1) = [0] x1 + [6]
                c_5(x1) = [2] x1 + [2]
           
           * Path {6}->{10}: YES(?,O(1))
             ---------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1) = [0] x1 + [0]
                a__g(x1) = [0] x1 + [0]
                b() = [0]
                c() = [0]
                a__b() = [0]
                mark(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                a__g^#(x1) = [0] x1 + [0]
                c_1() = [0]
                a__b^#() = [0]
                c_2() = [0]
                mark^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [1] x1 + [0]
                c_6() = [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {a__b^#() -> c_9()}
               Weak Rules: {mark^#(b()) -> c_5(a__b^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                b() = [0]
                a__b^#() = [2]
                mark^#(x1) = [0] x1 + [6]
                c_5(x1) = [2] x1 + [2]
                c_9() = [1]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1) = [0] x1 + [0]
                a__g(x1) = [0] x1 + [0]
                b() = [0]
                c() = [0]
                a__b() = [0]
                mark(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                a__g^#(x1) = [0] x1 + [0]
                c_1() = [0]
                a__b^#() = [0]
                c_2() = [0]
                mark^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7() = [0]
                c_8() = [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {mark^#(c()) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                c() = [7]
                mark^#(x1) = [1] x1 + [7]
                c_6() = [1]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputStrategy outermost added 08 Ex24 GM04 GM

stdout:

MAYBE
 Warning when parsing problem:
                             
                               Unsupported strategy 'OUTERMOST'

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputStrategy outermost added 08 Ex24 GM04 GM

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  a__f(X, g(X), Y) -> a__f(Y, Y, Y)
     , a__g(b()) -> c()
     , a__b() -> c()
     , mark(f(X1, X2, X3)) -> a__f(X1, X2, X3)
     , mark(g(X)) -> a__g(mark(X))
     , mark(b()) -> a__b()
     , mark(c()) -> c()
     , a__f(X1, X2, X3) -> f(X1, X2, X3)
     , a__g(X) -> g(X)
     , a__b() -> b()}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: a__f^#(X, g(X), Y) -> c_0(a__f^#(Y, Y, Y))
              , 2: a__g^#(b()) -> c_1()
              , 3: a__b^#() -> c_2()
              , 4: mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))
              , 5: mark^#(g(X)) -> c_4(a__g^#(mark(X)))
              , 6: mark^#(b()) -> c_5(a__b^#())
              , 7: mark^#(c()) -> c_6()
              , 8: a__f^#(X1, X2, X3) -> c_7(X1, X2, X3)
              , 9: a__g^#(X) -> c_8(X)
              , 10: a__b^#() -> c_9()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
                |
                |->{3}                                                   [    YES(?,O(1))     ]
                |
                `->{10}                                                  [    YES(?,O(1))     ]
             
             ->{5}                                                       [     inherited      ]
                |
                |->{2}                                                   [         NA         ]
                |
                `->{9}                                                   [         NA         ]
             
             ->{4}                                                       [   YES(?,O(n^2))    ]
                |
                |->{1}                                                   [       MAYBE        ]
                |   |
                |   `->{8}                                               [         NA         ]
                |
                `->{8}                                                   [   YES(?,O(n^3))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {4}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a__g(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                a__b() = [0]
                         [0]
                         [0]
                mark(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f(x1, x2, x3) = [1 0 0] x1 + [1 0 0] x2 + [1 0 0] x3 + [0]
                                [0 0 0]      [0 1 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                a__f^#(x1, x2, x3) = [3 0 0] x1 + [3 0 0] x2 + [3 0 0] x3 + [0]
                                     [3 0 0]      [3 0 0]      [3 0 0]      [0]
                                     [3 0 0]      [3 0 0]      [3 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                a__g^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                a__b^#() = [0]
                           [0]
                           [0]
                c_2() = [0]
                        [0]
                        [0]
                mark^#(x1) = [0 1 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(a__f^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [1 2 0] x1 + [1 3 0] x2 + [1 2 0] x3 + [0]
                                [0 1 0]      [0 0 2]      [0 1 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [4]
                a__f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 2 0]      [0 1 0]      [0 0 0]      [2]
                                     [0 2 0]      [0 3 0]      [0 0 0]      [0]
                mark^#(x1) = [3 2 0] x1 + [7]
                             [4 2 0]      [7]
                             [1 0 2]      [7]
                c_3(x1) = [0 2 2] x1 + [1]
                          [0 0 0]      [3]
                          [0 0 0]      [7]
           
           * Path {4}->{1}: MAYBE
             --------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {1}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a__g(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                a__b() = [0]
                         [0]
                         [0]
                mark(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                a__f^#(x1, x2, x3) = [1 1 1] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [3 3 3]      [3 3 3]      [3 3 3]      [0]
                                     [3 3 3]      [3 3 3]      [3 3 3]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                a__g^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                a__b^#() = [0]
                           [0]
                           [0]
                c_2() = [0]
                        [0]
                        [0]
                mark^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a__f^#(X, g(X), Y) -> c_0(a__f^#(Y, Y, Y))}
               Weak Rules: {mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}->{1}->{8}: NA
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {1}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a__g(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                a__b() = [0]
                         [0]
                         [0]
                mark(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                a__f^#(x1, x2, x3) = [3 3 3] x1 + [3 3 3] x2 + [3 3 3] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                a__g^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                a__b^#() = [0]
                           [0]
                           [0]
                c_2() = [0]
                        [0]
                        [0]
                mark^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1, x2, x3) = [1 1 1] x1 + [1 1 1] x2 + [1 1 1] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{8}: YES(?,O(n^3))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a__g(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                a__b() = [0]
                         [0]
                         [0]
                mark(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                a__f^#(x1, x2, x3) = [3 3 3] x1 + [3 3 3] x2 + [3 3 3] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                a__g^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                a__b^#() = [0]
                           [0]
                           [0]
                c_2() = [0]
                        [0]
                        [0]
                mark^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1, x2, x3) = [1 1 1] x1 + [1 1 1] x2 + [1 1 1] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a__f^#(X1, X2, X3) -> c_7(X1, X2, X3)}
               Weak Rules: {mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(a__f^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [1 4 3] x1 + [1 0 0] x2 + [1 2 2] x3 + [2]
                                [0 1 0]      [0 0 0]      [0 1 0]      [0]
                                [0 0 1]      [0 0 0]      [0 0 0]      [2]
                a__f^#(x1, x2, x3) = [0 2 0] x1 + [0 0 0] x2 + [0 2 0] x3 + [2]
                                     [0 0 0]      [0 0 0]      [0 1 2]      [0]
                                     [0 2 0]      [0 0 0]      [0 0 0]      [2]
                mark^#(x1) = [2 1 2] x1 + [7]
                             [2 0 2]      [7]
                             [2 5 0]      [7]
                c_3(x1) = [2 0 2] x1 + [3]
                          [0 0 0]      [7]
                          [3 2 2]      [1]
                c_7(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [1]
                                  [0 0 0]      [0 0 0]      [0 1 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{2}.
           
           * Path {5}->{2}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  mark(f(X1, X2, X3)) -> a__f(X1, X2, X3)
                , mark(g(X)) -> a__g(mark(X))
                , mark(b()) -> a__b()
                , mark(c()) -> c()
                , a__f(X, g(X), Y) -> a__f(Y, Y, Y)
                , a__g(b()) -> c()
                , a__b() -> c()
                , a__f(X1, X2, X3) -> f(X1, X2, X3)
                , a__g(X) -> g(X)
                , a__b() -> b()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}->{9}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  mark(f(X1, X2, X3)) -> a__f(X1, X2, X3)
                , mark(g(X)) -> a__g(mark(X))
                , mark(b()) -> a__b()
                , mark(c()) -> c()
                , a__f(X, g(X), Y) -> a__f(Y, Y, Y)
                , a__g(b()) -> c()
                , a__b() -> c()
                , a__f(X1, X2, X3) -> f(X1, X2, X3)
                , a__g(X) -> g(X)
                , a__b() -> b()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a__g(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                a__b() = [0]
                         [0]
                         [0]
                mark(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                a__f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                a__g^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                a__b^#() = [0]
                           [0]
                           [0]
                c_2() = [0]
                        [0]
                        [0]
                mark^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {mark^#(b()) -> c_5(a__b^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                b() = [2]
                      [2]
                      [2]
                a__b^#() = [2]
                           [2]
                           [0]
                mark^#(x1) = [0 2 2] x1 + [7]
                             [2 2 0]      [7]
                             [0 0 0]      [7]
                c_5(x1) = [2 2 0] x1 + [1]
                          [0 0 0]      [7]
                          [2 0 0]      [3]
           
           * Path {6}->{3}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {1},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a__g(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                a__b() = [0]
                         [0]
                         [0]
                mark(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                a__f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                a__g^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                a__b^#() = [0]
                           [0]
                           [0]
                c_2() = [0]
                        [0]
                        [0]
                mark^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a__b^#() -> c_2()}
               Weak Rules: {mark^#(b()) -> c_5(a__b^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                b() = [2]
                      [6]
                      [2]
                a__b^#() = [2]
                           [2]
                           [2]
                c_2() = [1]
                        [0]
                        [0]
                mark^#(x1) = [2 0 2] x1 + [7]
                             [0 2 0]      [3]
                             [2 0 0]      [7]
                c_5(x1) = [2 2 0] x1 + [2]
                          [2 2 2]      [3]
                          [2 2 0]      [3]
           
           * Path {6}->{10}: YES(?,O(1))
             ---------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {1},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a__g(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                a__b() = [0]
                         [0]
                         [0]
                mark(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                a__f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                a__g^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                a__b^#() = [0]
                           [0]
                           [0]
                c_2() = [0]
                        [0]
                        [0]
                mark^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a__b^#() -> c_9()}
               Weak Rules: {mark^#(b()) -> c_5(a__b^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                b() = [2]
                      [6]
                      [2]
                a__b^#() = [2]
                           [2]
                           [2]
                mark^#(x1) = [2 0 2] x1 + [7]
                             [0 2 0]      [3]
                             [2 0 0]      [7]
                c_5(x1) = [2 2 0] x1 + [2]
                          [2 2 2]      [3]
                          [2 2 0]      [3]
                c_9() = [1]
                        [0]
                        [0]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                   [0 0 0]      [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a__g(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                b() = [0]
                      [0]
                      [0]
                c() = [0]
                      [0]
                      [0]
                a__b() = [0]
                         [0]
                         [0]
                mark(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                a__f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                     [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                a__g^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                a__b^#() = [0]
                           [0]
                           [0]
                c_2() = [0]
                        [0]
                        [0]
                mark^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
                c_7(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_8(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_9() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {mark^#(c()) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                c() = [2]
                      [2]
                      [2]
                mark^#(x1) = [0 2 0] x1 + [7]
                             [2 2 0]      [3]
                             [2 2 2]      [3]
                c_6() = [0]
                        [1]
                        [1]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: a__f^#(X, g(X), Y) -> c_0(a__f^#(Y, Y, Y))
              , 2: a__g^#(b()) -> c_1()
              , 3: a__b^#() -> c_2()
              , 4: mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))
              , 5: mark^#(g(X)) -> c_4(a__g^#(mark(X)))
              , 6: mark^#(b()) -> c_5(a__b^#())
              , 7: mark^#(c()) -> c_6()
              , 8: a__f^#(X1, X2, X3) -> c_7(X1, X2, X3)
              , 9: a__g^#(X) -> c_8(X)
              , 10: a__b^#() -> c_9()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
                |
                |->{3}                                                   [    YES(?,O(1))     ]
                |
                `->{10}                                                  [    YES(?,O(1))     ]
             
             ->{5}                                                       [     inherited      ]
                |
                |->{2}                                                   [         NA         ]
                |
                `->{9}                                                   [         NA         ]
             
             ->{4}                                                       [   YES(?,O(n^2))    ]
                |
                |->{1}                                                   [       MAYBE        ]
                |   |
                |   `->{8}                                               [         NA         ]
                |
                `->{8}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {4}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a__g(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                a__b() = [0]
                         [0]
                mark(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [0]
                                [0 1]      [0 1]      [0 1]      [0]
                a__f^#(x1, x2, x3) = [3 0] x1 + [3 0] x2 + [3 0] x3 + [0]
                                     [3 0]      [3 0]      [3 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                a__g^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_1() = [0]
                        [0]
                a__b^#() = [0]
                           [0]
                c_2() = [0]
                        [0]
                mark^#(x1) = [0 1] x1 + [0]
                             [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(a__f^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [1 2] x1 + [1 2] x2 + [1 2] x3 + [2]
                                [0 1]      [0 1]      [0 1]      [2]
                a__f^#(x1, x2, x3) = [0 0] x1 + [0 2] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                mark^#(x1) = [3 3] x1 + [3]
                             [2 5]      [1]
                c_3(x1) = [2 0] x1 + [7]
                          [0 0]      [7]
           
           * Path {4}->{1}: MAYBE
             --------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {1}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a__g(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                a__b() = [0]
                         [0]
                mark(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                a__f^#(x1, x2, x3) = [1 1] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [3 3]      [3 3]      [3 3]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                a__g^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_1() = [0]
                        [0]
                a__b^#() = [0]
                           [0]
                c_2() = [0]
                        [0]
                mark^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a__f^#(X, g(X), Y) -> c_0(a__f^#(Y, Y, Y))}
               Weak Rules: {mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}->{1}->{8}: NA
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {1}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a__g(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                a__b() = [0]
                         [0]
                mark(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                a__f^#(x1, x2, x3) = [3 3] x1 + [3 3] x2 + [3 3] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                a__g^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_1() = [0]
                        [0]
                a__b^#() = [0]
                           [0]
                c_2() = [0]
                        [0]
                mark^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1, x2, x3) = [1 1] x1 + [1 1] x2 + [1 1] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9() = [0]
                        [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{8}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a__g(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                a__b() = [0]
                         [0]
                mark(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                a__f^#(x1, x2, x3) = [3 3] x1 + [3 3] x2 + [3 3] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                a__g^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_1() = [0]
                        [0]
                a__b^#() = [0]
                           [0]
                c_2() = [0]
                        [0]
                mark^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1, x2, x3) = [1 1] x1 + [1 1] x2 + [1 1] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a__f^#(X1, X2, X3) -> c_7(X1, X2, X3)}
               Weak Rules: {mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(a__f^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [1 2] x1 + [1 0] x2 + [1 2] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                a__f^#(x1, x2, x3) = [0 2] x1 + [0 0] x2 + [0 2] x3 + [2]
                                     [0 0]      [0 0]      [0 0]      [2]
                mark^#(x1) = [6 0] x1 + [7]
                             [4 0]      [7]
                c_3(x1) = [2 0] x1 + [3]
                          [0 2]      [3]
                c_7(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [1]
                                  [0 0]      [0 0]      [0 0]      [0]
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{2}.
           
           * Path {5}->{2}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  mark(f(X1, X2, X3)) -> a__f(X1, X2, X3)
                , mark(g(X)) -> a__g(mark(X))
                , mark(b()) -> a__b()
                , mark(c()) -> c()
                , a__f(X, g(X), Y) -> a__f(Y, Y, Y)
                , a__g(b()) -> c()
                , a__b() -> c()
                , a__f(X1, X2, X3) -> f(X1, X2, X3)
                , a__g(X) -> g(X)
                , a__b() -> b()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}->{9}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  mark(f(X1, X2, X3)) -> a__f(X1, X2, X3)
                , mark(g(X)) -> a__g(mark(X))
                , mark(b()) -> a__b()
                , mark(c()) -> c()
                , a__f(X, g(X), Y) -> a__f(Y, Y, Y)
                , a__g(b()) -> c()
                , a__b() -> c()
                , a__f(X1, X2, X3) -> f(X1, X2, X3)
                , a__g(X) -> g(X)
                , a__b() -> b()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a__g(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                a__b() = [0]
                         [0]
                mark(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                a__f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                a__g^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_1() = [0]
                        [0]
                a__b^#() = [0]
                           [0]
                c_2() = [0]
                        [0]
                mark^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {mark^#(b()) -> c_5(a__b^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                b() = [2]
                      [2]
                a__b^#() = [0]
                           [2]
                mark^#(x1) = [2 2] x1 + [7]
                             [2 0]      [7]
                c_5(x1) = [0 2] x1 + [3]
                          [0 2]      [3]
           
           * Path {6}->{3}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {1},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a__g(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                a__b() = [0]
                         [0]
                mark(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                a__f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                a__g^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_1() = [0]
                        [0]
                a__b^#() = [0]
                           [0]
                c_2() = [0]
                        [0]
                mark^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_6() = [0]
                        [0]
                c_7(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a__b^#() -> c_2()}
               Weak Rules: {mark^#(b()) -> c_5(a__b^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                b() = [2]
                      [2]
                a__b^#() = [2]
                           [2]
                c_2() = [1]
                        [0]
                mark^#(x1) = [0 0] x1 + [7]
                             [1 2]      [7]
                c_5(x1) = [2 0] x1 + [2]
                          [2 2]      [3]
           
           * Path {6}->{10}: YES(?,O(1))
             ---------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {1},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a__g(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                a__b() = [0]
                         [0]
                mark(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                a__f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                a__g^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_1() = [0]
                        [0]
                a__b^#() = [0]
                           [0]
                c_2() = [0]
                        [0]
                mark^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_6() = [0]
                        [0]
                c_7(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a__b^#() -> c_9()}
               Weak Rules: {mark^#(b()) -> c_5(a__b^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                b() = [2]
                      [2]
                a__b^#() = [2]
                           [2]
                mark^#(x1) = [0 0] x1 + [7]
                             [1 2]      [7]
                c_5(x1) = [2 0] x1 + [2]
                          [2 2]      [3]
                c_9() = [1]
                        [0]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                   [0 0]      [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a__g(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                b() = [0]
                      [0]
                c() = [0]
                      [0]
                a__b() = [0]
                         [0]
                mark(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                a__f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                     [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                a__g^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_1() = [0]
                        [0]
                a__b^#() = [0]
                           [0]
                c_2() = [0]
                        [0]
                mark^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
                c_7(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_8(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_9() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {mark^#(c()) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                c() = [2]
                      [2]
                mark^#(x1) = [2 0] x1 + [7]
                             [2 2]      [7]
                c_6() = [0]
                        [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: a__f^#(X, g(X), Y) -> c_0(a__f^#(Y, Y, Y))
              , 2: a__g^#(b()) -> c_1()
              , 3: a__b^#() -> c_2()
              , 4: mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))
              , 5: mark^#(g(X)) -> c_4(a__g^#(mark(X)))
              , 6: mark^#(b()) -> c_5(a__b^#())
              , 7: mark^#(c()) -> c_6()
              , 8: a__f^#(X1, X2, X3) -> c_7(X1, X2, X3)
              , 9: a__g^#(X) -> c_8(X)
              , 10: a__b^#() -> c_9()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
                |
                |->{3}                                                   [    YES(?,O(1))     ]
                |
                `->{10}                                                  [    YES(?,O(1))     ]
             
             ->{5}                                                       [     inherited      ]
                |
                |->{2}                                                   [         NA         ]
                |
                `->{9}                                                   [         NA         ]
             
             ->{4}                                                       [   YES(?,O(n^1))    ]
                |
                |->{1}                                                   [       MAYBE        ]
                |   |
                |   `->{8}                                               [         NA         ]
                |
                `->{8}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {4}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1) = [0] x1 + [0]
                a__g(x1) = [0] x1 + [0]
                b() = [0]
                c() = [0]
                a__b() = [0]
                mark(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                a__f^#(x1, x2, x3) = [3] x1 + [3] x2 + [3] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                a__g^#(x1) = [0] x1 + [0]
                c_1() = [0]
                a__b^#() = [0]
                c_2() = [0]
                mark^#(x1) = [3] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8(x1) = [0] x1 + [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(a__f^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [2]
                mark^#(x1) = [0] x1 + [7]
                c_3(x1) = [2] x1 + [1]
           
           * Path {4}->{1}: MAYBE
             --------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {1}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1) = [0] x1 + [0]
                a__g(x1) = [0] x1 + [0]
                b() = [0]
                c() = [0]
                a__b() = [0]
                mark(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                a__f^#(x1, x2, x3) = [1] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [1] x1 + [0]
                a__g^#(x1) = [0] x1 + [0]
                c_1() = [0]
                a__b^#() = [0]
                c_2() = [0]
                mark^#(x1) = [0] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8(x1) = [0] x1 + [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a__f^#(X, g(X), Y) -> c_0(a__f^#(Y, Y, Y))}
               Weak Rules: {mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {4}->{1}->{8}: NA
             ----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {1}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1) = [0] x1 + [0]
                a__g(x1) = [0] x1 + [0]
                b() = [0]
                c() = [0]
                a__b() = [0]
                mark(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                a__f^#(x1, x2, x3) = [3] x1 + [3] x2 + [3] x3 + [0]
                c_0(x1) = [1] x1 + [0]
                a__g^#(x1) = [0] x1 + [0]
                c_1() = [0]
                a__b^#() = [0]
                c_2() = [0]
                mark^#(x1) = [0] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                c_8(x1) = [0] x1 + [0]
                c_9() = [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{8}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_4) = {}, Uargs(c_5) = {},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1) = [0] x1 + [0]
                a__g(x1) = [0] x1 + [0]
                b() = [0]
                c() = [0]
                a__b() = [0]
                mark(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                a__f^#(x1, x2, x3) = [3] x1 + [3] x2 + [3] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                a__g^#(x1) = [0] x1 + [0]
                c_1() = [0]
                a__b^#() = [0]
                c_2() = [0]
                mark^#(x1) = [0] x1 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [0]
                c_8(x1) = [0] x1 + [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a__f^#(X1, X2, X3) -> c_7(X1, X2, X3)}
               Weak Rules: {mark^#(f(X1, X2, X3)) -> c_3(a__f^#(X1, X2, X3))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(a__f^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {1}, Uargs(c_7) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2]
                a__f^#(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [2]
                mark^#(x1) = [2] x1 + [7]
                c_3(x1) = [2] x1 + [7]
                c_7(x1, x2, x3) = [1] x1 + [1] x2 + [1] x3 + [1]
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{2}.
           
           * Path {5}->{2}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  mark(f(X1, X2, X3)) -> a__f(X1, X2, X3)
                , mark(g(X)) -> a__g(mark(X))
                , mark(b()) -> a__b()
                , mark(c()) -> c()
                , a__f(X, g(X), Y) -> a__f(Y, Y, Y)
                , a__g(b()) -> c()
                , a__b() -> c()
                , a__f(X1, X2, X3) -> f(X1, X2, X3)
                , a__g(X) -> g(X)
                , a__b() -> b()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}->{9}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  mark(f(X1, X2, X3)) -> a__f(X1, X2, X3)
                , mark(g(X)) -> a__g(mark(X))
                , mark(b()) -> a__b()
                , mark(c()) -> c()
                , a__f(X, g(X), Y) -> a__f(Y, Y, Y)
                , a__g(b()) -> c()
                , a__b() -> c()
                , a__f(X1, X2, X3) -> f(X1, X2, X3)
                , a__g(X) -> g(X)
                , a__b() -> b()}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1) = [0] x1 + [0]
                a__g(x1) = [0] x1 + [0]
                b() = [0]
                c() = [0]
                a__b() = [0]
                mark(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                a__g^#(x1) = [0] x1 + [0]
                c_1() = [0]
                a__b^#() = [0]
                c_2() = [0]
                mark^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8(x1) = [0] x1 + [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {mark^#(b()) -> c_5(a__b^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                b() = [2]
                a__b^#() = [2]
                mark^#(x1) = [2] x1 + [5]
                c_5(x1) = [2] x1 + [3]
           
           * Path {6}->{3}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {1},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1) = [0] x1 + [0]
                a__g(x1) = [0] x1 + [0]
                b() = [0]
                c() = [0]
                a__b() = [0]
                mark(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                a__g^#(x1) = [0] x1 + [0]
                c_1() = [0]
                a__b^#() = [0]
                c_2() = [0]
                mark^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [1] x1 + [0]
                c_6() = [0]
                c_7(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8(x1) = [0] x1 + [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a__b^#() -> c_2()}
               Weak Rules: {mark^#(b()) -> c_5(a__b^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                b() = [0]
                a__b^#() = [2]
                c_2() = [1]
                mark^#(x1) = [0] x1 + [6]
                c_5(x1) = [2] x1 + [2]
           
           * Path {6}->{10}: YES(?,O(1))
             ---------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {1},
                 Uargs(c_7) = {}, Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1) = [0] x1 + [0]
                a__g(x1) = [0] x1 + [0]
                b() = [0]
                c() = [0]
                a__b() = [0]
                mark(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                a__g^#(x1) = [0] x1 + [0]
                c_1() = [0]
                a__b^#() = [0]
                c_2() = [0]
                mark^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [1] x1 + [0]
                c_6() = [0]
                c_7(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8(x1) = [0] x1 + [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {a__b^#() -> c_9()}
               Weak Rules: {mark^#(b()) -> c_5(a__b^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                b() = [0]
                a__b^#() = [2]
                mark^#(x1) = [0] x1 + [6]
                c_5(x1) = [2] x1 + [2]
                c_9() = [1]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(a__f) = {}, Uargs(g) = {}, Uargs(a__g) = {},
                 Uargs(mark) = {}, Uargs(f) = {}, Uargs(a__f^#) = {},
                 Uargs(c_0) = {}, Uargs(a__g^#) = {}, Uargs(mark^#) = {},
                 Uargs(c_3) = {}, Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_7) = {},
                 Uargs(c_8) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                a__f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                g(x1) = [0] x1 + [0]
                a__g(x1) = [0] x1 + [0]
                b() = [0]
                c() = [0]
                a__b() = [0]
                mark(x1) = [0] x1 + [0]
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                a__f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                a__g^#(x1) = [0] x1 + [0]
                c_1() = [0]
                a__b^#() = [0]
                c_2() = [0]
                mark^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
                c_7(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_8(x1) = [0] x1 + [0]
                c_9() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {mark^#(c()) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(mark^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                c() = [7]
                mark^#(x1) = [1] x1 + [7]
                c_6() = [1]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.