Problem Strategy outermost added 08 Ex24 Luc06 FR

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputStrategy outermost added 08 Ex24 Luc06 FR

stdout:

MAYBE

Problem:
 f(n__b(),X,n__c()) -> f(X,c(),X)
 c() -> b()
 b() -> n__b()
 c() -> n__c()
 activate(n__b()) -> b()
 activate(n__c()) -> c()
 activate(X) -> X

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputStrategy outermost added 08 Ex24 Luc06 FR

stdout:

MAYBE
 Warning when parsing problem:
                             
                               Unsupported strategy 'OUTERMOST'

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputStrategy outermost added 08 Ex24 Luc06 FR

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  f(n__b(), X, n__c()) -> f(X, c(), X)
     , c() -> b()
     , b() -> n__b()
     , c() -> n__c()
     , activate(n__b()) -> b()
     , activate(n__c()) -> c()
     , activate(X) -> X}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(n__b(), X, n__c()) -> c_0(f^#(X, c(), X))
              , 2: c^#() -> c_1(b^#())
              , 3: b^#() -> c_2()
              , 4: c^#() -> c_3()
              , 5: activate^#(n__b()) -> c_4(b^#())
              , 6: activate^#(n__c()) -> c_5(c^#())
              , 7: activate^#(X) -> c_6()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
                |
                |->{2}                                                   [    YES(?,O(1))     ]
                |   |
                |   `->{3}                                               [    YES(?,O(1))     ]
                |
                `->{4}                                                   [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
                |
                `->{3}                                                   [    YES(?,O(1))     ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  c() -> b()
                , c() -> n__c()
                , b() -> n__b()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                n__b() = [0]
                         [1]
                         [3]
                n__c() = [0]
                         [3]
                         [3]
                c() = [3]
                      [3]
                      [3]
                b() = [1]
                      [3]
                      [3]
                activate(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                f^#(x1, x2, x3) = [1 0 0] x1 + [3 3 3] x2 + [1 3 3] x3 + [0]
                                  [3 3 3]      [0 0 0]      [3 3 3]      [0]
                                  [3 3 3]      [0 0 0]      [3 3 3]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                b^#() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                activate^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {f^#(n__b(), X, n__c()) -> c_0(f^#(X, c(), X))}
               Weak Rules:
                 {  c() -> b()
                  , c() -> n__c()
                  , b() -> n__b()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                n__b() = [0]
                         [0]
                         [0]
                n__c() = [0]
                         [0]
                         [0]
                c() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                activate(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                b^#() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                activate^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {activate^#(n__b()) -> c_4(b^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__b() = [2]
                         [2]
                         [2]
                b^#() = [2]
                        [2]
                        [0]
                activate^#(x1) = [0 2 2] x1 + [7]
                                 [2 2 0]      [7]
                                 [0 0 0]      [7]
                c_4(x1) = [2 2 0] x1 + [1]
                          [0 0 0]      [7]
                          [2 0 0]      [3]
           
           * Path {5}->{3}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {1}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                n__b() = [0]
                         [0]
                         [0]
                n__c() = [0]
                         [0]
                         [0]
                c() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                activate(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                b^#() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                activate^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {b^#() -> c_2()}
               Weak Rules: {activate^#(n__b()) -> c_4(b^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__b() = [2]
                         [6]
                         [2]
                b^#() = [2]
                        [2]
                        [2]
                c_2() = [1]
                        [0]
                        [0]
                activate^#(x1) = [2 0 2] x1 + [7]
                                 [0 2 0]      [3]
                                 [2 0 0]      [7]
                c_4(x1) = [2 2 0] x1 + [2]
                          [2 2 2]      [3]
                          [2 2 0]      [3]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                n__b() = [0]
                         [0]
                         [0]
                n__c() = [0]
                         [0]
                         [0]
                c() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                activate(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                b^#() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                activate^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {activate^#(n__c()) -> c_5(c^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [2]
                         [2]
                         [2]
                c^#() = [2]
                        [2]
                        [0]
                activate^#(x1) = [0 2 2] x1 + [7]
                                 [2 2 0]      [7]
                                 [0 0 0]      [7]
                c_5(x1) = [2 2 0] x1 + [1]
                          [0 0 0]      [7]
                          [2 0 0]      [3]
           
           * Path {6}->{2}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                n__b() = [0]
                         [0]
                         [0]
                n__c() = [0]
                         [0]
                         [0]
                c() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                activate(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                b^#() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                activate^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_6() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {c^#() -> c_1(b^#())}
               Weak Rules: {activate^#(n__c()) -> c_5(c^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(c_1) = {}, Uargs(activate^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [0]
                         [2]
                         [2]
                c^#() = [2]
                        [2]
                        [2]
                c_1(x1) = [4 7 4] x1 + [1]
                          [4 7 4]      [2]
                          [4 4 7]      [2]
                b^#() = [0]
                        [0]
                        [0]
                activate^#(x1) = [0 2 2] x1 + [7]
                                 [0 2 2]      [7]
                                 [0 0 0]      [7]
                c_5(x1) = [2 2 2] x1 + [3]
                          [2 0 2]      [2]
                          [0 0 2]      [1]
           
           * Path {6}->{2}->{3}: YES(?,O(1))
             -------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {1}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                n__b() = [0]
                         [0]
                         [0]
                n__c() = [0]
                         [0]
                         [0]
                c() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                activate(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                b^#() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                activate^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_6() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {b^#() -> c_2()}
               Weak Rules:
                 {  c^#() -> c_1(b^#())
                  , activate^#(n__c()) -> c_5(c^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(c_1) = {1}, Uargs(activate^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [2]
                         [2]
                         [2]
                c^#() = [2]
                        [2]
                        [2]
                c_1(x1) = [2 7 4] x1 + [0]
                          [0 7 4]      [2]
                          [0 4 7]      [2]
                b^#() = [1]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                activate^#(x1) = [0 2 2] x1 + [7]
                                 [2 0 2]      [7]
                                 [0 2 2]      [7]
                c_5(x1) = [2 2 2] x1 + [3]
                          [2 2 2]      [3]
                          [0 0 2]      [7]
           
           * Path {6}->{4}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                n__b() = [0]
                         [0]
                         [0]
                n__c() = [0]
                         [0]
                         [0]
                c() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                activate(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                b^#() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                activate^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_6() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {c^#() -> c_3()}
               Weak Rules: {activate^#(n__c()) -> c_5(c^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [2]
                         [6]
                         [2]
                c^#() = [2]
                        [2]
                        [2]
                c_3() = [1]
                        [0]
                        [0]
                activate^#(x1) = [2 0 2] x1 + [7]
                                 [0 2 0]      [3]
                                 [2 0 0]      [7]
                c_5(x1) = [2 2 0] x1 + [2]
                          [2 2 2]      [3]
                          [2 2 0]      [3]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                n__b() = [0]
                         [0]
                         [0]
                n__c() = [0]
                         [0]
                         [0]
                c() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                activate(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                b^#() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                activate^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {activate^#(X) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                activate^#(x1) = [0 0 0] x1 + [7]
                                 [0 0 0]      [7]
                                 [0 0 0]      [7]
                c_6() = [0]
                        [3]
                        [3]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(n__b(), X, n__c()) -> c_0(f^#(X, c(), X))
              , 2: c^#() -> c_1(b^#())
              , 3: b^#() -> c_2()
              , 4: c^#() -> c_3()
              , 5: activate^#(n__b()) -> c_4(b^#())
              , 6: activate^#(n__c()) -> c_5(c^#())
              , 7: activate^#(X) -> c_6()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
                |
                |->{2}                                                   [    YES(?,O(1))     ]
                |   |
                |   `->{3}                                               [    YES(?,O(1))     ]
                |
                `->{4}                                                   [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
                |
                `->{3}                                                   [    YES(?,O(1))     ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  c() -> b()
                , c() -> n__c()
                , b() -> n__b()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                n__b() = [1]
                         [1]
                n__c() = [1]
                         [1]
                c() = [3]
                      [3]
                b() = [2]
                      [1]
                activate(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                f^#(x1, x2, x3) = [1 0] x1 + [3 3] x2 + [1 3] x3 + [0]
                                  [3 3]      [0 0]      [3 3]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c^#() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                b^#() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                activate^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {f^#(n__b(), X, n__c()) -> c_0(f^#(X, c(), X))}
               Weak Rules:
                 {  c() -> b()
                  , c() -> n__c()
                  , b() -> n__b()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                n__b() = [0]
                         [0]
                n__c() = [0]
                         [0]
                c() = [0]
                      [0]
                b() = [0]
                      [0]
                activate(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c^#() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                b^#() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                activate^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {activate^#(n__b()) -> c_4(b^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__b() = [2]
                         [2]
                b^#() = [0]
                        [2]
                activate^#(x1) = [2 2] x1 + [7]
                                 [2 0]      [7]
                c_4(x1) = [0 2] x1 + [3]
                          [0 2]      [3]
           
           * Path {5}->{3}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {1}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                n__b() = [0]
                         [0]
                n__c() = [0]
                         [0]
                c() = [0]
                      [0]
                b() = [0]
                      [0]
                activate(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c^#() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                b^#() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                activate^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {b^#() -> c_2()}
               Weak Rules: {activate^#(n__b()) -> c_4(b^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__b() = [2]
                         [2]
                b^#() = [2]
                        [2]
                c_2() = [1]
                        [0]
                activate^#(x1) = [0 0] x1 + [7]
                                 [1 2]      [7]
                c_4(x1) = [2 0] x1 + [2]
                          [2 2]      [3]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                n__b() = [0]
                         [0]
                n__c() = [0]
                         [0]
                c() = [0]
                      [0]
                b() = [0]
                      [0]
                activate(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c^#() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                b^#() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                activate^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {activate^#(n__c()) -> c_5(c^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [2]
                         [2]
                c^#() = [0]
                        [2]
                activate^#(x1) = [2 2] x1 + [7]
                                 [2 0]      [7]
                c_5(x1) = [0 2] x1 + [3]
                          [0 2]      [3]
           
           * Path {6}->{2}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                n__b() = [0]
                         [0]
                n__c() = [0]
                         [0]
                c() = [0]
                      [0]
                b() = [0]
                      [0]
                activate(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c^#() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                b^#() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                activate^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_6() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {c^#() -> c_1(b^#())}
               Weak Rules: {activate^#(n__c()) -> c_5(c^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(c_1) = {}, Uargs(activate^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [2]
                         [2]
                c^#() = [2]
                        [2]
                c_1(x1) = [4 0] x1 + [1]
                          [4 0]      [2]
                b^#() = [0]
                        [4]
                activate^#(x1) = [2 2] x1 + [6]
                                 [2 0]      [7]
                c_5(x1) = [4 0] x1 + [3]
                          [2 2]      [3]
           
           * Path {6}->{2}->{3}: YES(?,O(1))
             -------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {1}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                n__b() = [0]
                         [0]
                n__c() = [0]
                         [0]
                c() = [0]
                      [0]
                b() = [0]
                      [0]
                activate(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c^#() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                b^#() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                activate^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_6() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {b^#() -> c_2()}
               Weak Rules:
                 {  c^#() -> c_1(b^#())
                  , activate^#(n__c()) -> c_5(c^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(c_1) = {1}, Uargs(activate^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [2]
                         [0]
                c^#() = [2]
                        [2]
                c_1(x1) = [2 4] x1 + [0]
                          [0 7]      [2]
                b^#() = [1]
                        [0]
                c_2() = [0]
                        [0]
                activate^#(x1) = [2 0] x1 + [6]
                                 [0 0]      [7]
                c_5(x1) = [2 2] x1 + [2]
                          [2 0]      [2]
           
           * Path {6}->{4}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                n__b() = [0]
                         [0]
                n__c() = [0]
                         [0]
                c() = [0]
                      [0]
                b() = [0]
                      [0]
                activate(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c^#() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                b^#() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                activate^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_6() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {c^#() -> c_3()}
               Weak Rules: {activate^#(n__c()) -> c_5(c^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [2]
                         [2]
                c^#() = [2]
                        [2]
                c_3() = [1]
                        [0]
                activate^#(x1) = [0 0] x1 + [7]
                                 [1 2]      [7]
                c_5(x1) = [2 0] x1 + [2]
                          [2 2]      [3]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                n__b() = [0]
                         [0]
                n__c() = [0]
                         [0]
                c() = [0]
                      [0]
                b() = [0]
                      [0]
                activate(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c^#() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                b^#() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                activate^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {activate^#(X) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                activate^#(x1) = [0 0] x1 + [7]
                                 [0 0]      [7]
                c_6() = [0]
                        [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(n__b(), X, n__c()) -> c_0(f^#(X, c(), X))
              , 2: c^#() -> c_1(b^#())
              , 3: b^#() -> c_2()
              , 4: c^#() -> c_3()
              , 5: activate^#(n__b()) -> c_4(b^#())
              , 6: activate^#(n__c()) -> c_5(c^#())
              , 7: activate^#(X) -> c_6()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
                |
                |->{2}                                                   [    YES(?,O(1))     ]
                |   |
                |   `->{3}                                               [    YES(?,O(1))     ]
                |
                `->{4}                                                   [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
                |
                `->{3}                                                   [    YES(?,O(1))     ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  c() -> b()
                , c() -> n__c()
                , b() -> n__b()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {2},
                 Uargs(c_0) = {1}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                n__b() = [0]
                n__c() = [2]
                c() = [3]
                b() = [1]
                activate(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [3] x2 + [3] x3 + [0]
                c_0(x1) = [1] x1 + [0]
                c^#() = [0]
                c_1(x1) = [0] x1 + [0]
                b^#() = [0]
                c_2() = [0]
                c_3() = [0]
                activate^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
             Complexity induced by the adequate RMI: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {f^#(n__b(), X, n__c()) -> c_0(f^#(X, c(), X))}
               Weak Rules:
                 {  c() -> b()
                  , c() -> n__c()
                  , b() -> n__b()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                n__b() = [0]
                n__c() = [0]
                c() = [0]
                b() = [0]
                activate(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                c^#() = [0]
                c_1(x1) = [0] x1 + [0]
                b^#() = [0]
                c_2() = [0]
                c_3() = [0]
                activate^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {activate^#(n__b()) -> c_4(b^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__b() = [2]
                b^#() = [2]
                activate^#(x1) = [2] x1 + [5]
                c_4(x1) = [2] x1 + [3]
           
           * Path {5}->{3}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {1}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                n__b() = [0]
                n__c() = [0]
                c() = [0]
                b() = [0]
                activate(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                c^#() = [0]
                c_1(x1) = [0] x1 + [0]
                b^#() = [0]
                c_2() = [0]
                c_3() = [0]
                activate^#(x1) = [0] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {b^#() -> c_2()}
               Weak Rules: {activate^#(n__b()) -> c_4(b^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__b() = [0]
                b^#() = [2]
                c_2() = [1]
                activate^#(x1) = [0] x1 + [6]
                c_4(x1) = [2] x1 + [2]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                n__b() = [0]
                n__c() = [0]
                c() = [0]
                b() = [0]
                activate(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                c^#() = [0]
                c_1(x1) = [0] x1 + [0]
                b^#() = [0]
                c_2() = [0]
                c_3() = [0]
                activate^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {activate^#(n__c()) -> c_5(c^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [2]
                c^#() = [2]
                activate^#(x1) = [2] x1 + [5]
                c_5(x1) = [2] x1 + [3]
           
           * Path {6}->{2}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                n__b() = [0]
                n__c() = [0]
                c() = [0]
                b() = [0]
                activate(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                c^#() = [0]
                c_1(x1) = [0] x1 + [0]
                b^#() = [0]
                c_2() = [0]
                c_3() = [0]
                activate^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [1] x1 + [0]
                c_6() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {c^#() -> c_1(b^#())}
               Weak Rules: {activate^#(n__c()) -> c_5(c^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(c_1) = {}, Uargs(activate^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [2]
                c^#() = [2]
                c_1(x1) = [0] x1 + [1]
                b^#() = [7]
                activate^#(x1) = [2] x1 + [7]
                c_5(x1) = [4] x1 + [3]
           
           * Path {6}->{2}->{3}: YES(?,O(1))
             -------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {1}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                n__b() = [0]
                n__c() = [0]
                c() = [0]
                b() = [0]
                activate(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                c^#() = [0]
                c_1(x1) = [1] x1 + [0]
                b^#() = [0]
                c_2() = [0]
                c_3() = [0]
                activate^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [1] x1 + [0]
                c_6() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {b^#() -> c_2()}
               Weak Rules:
                 {  c^#() -> c_1(b^#())
                  , activate^#(n__c()) -> c_5(c^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(c_1) = {1}, Uargs(activate^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [2]
                c^#() = [2]
                c_1(x1) = [2] x1 + [0]
                b^#() = [1]
                c_2() = [0]
                activate^#(x1) = [2] x1 + [7]
                c_5(x1) = [2] x1 + [6]
           
           * Path {6}->{4}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                n__b() = [0]
                n__c() = [0]
                c() = [0]
                b() = [0]
                activate(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                c^#() = [0]
                c_1(x1) = [0] x1 + [0]
                b^#() = [0]
                c_2() = [0]
                c_3() = [0]
                activate^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [1] x1 + [0]
                c_6() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {c^#() -> c_3()}
               Weak Rules: {activate^#(n__c()) -> c_5(c^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [0]
                c^#() = [2]
                c_3() = [1]
                activate^#(x1) = [0] x1 + [6]
                c_5(x1) = [2] x1 + [2]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                n__b() = [0]
                n__c() = [0]
                c() = [0]
                b() = [0]
                activate(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                c^#() = [0]
                c_1(x1) = [0] x1 + [0]
                b^#() = [0]
                c_2() = [0]
                c_3() = [0]
                activate^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {activate^#(X) -> c_6()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                activate^#(x1) = [0] x1 + [7]
                c_6() = [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputStrategy outermost added 08 Ex24 Luc06 FR

stdout:

MAYBE
 Warning when parsing problem:
                             
                               Unsupported strategy 'OUTERMOST'

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputStrategy outermost added 08 Ex24 Luc06 FR

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  f(n__b(), X, n__c()) -> f(X, c(), X)
     , c() -> b()
     , b() -> n__b()
     , c() -> n__c()
     , activate(n__b()) -> b()
     , activate(n__c()) -> c()
     , activate(X) -> X}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(n__b(), X, n__c()) -> c_0(f^#(X, c(), X))
              , 2: c^#() -> c_1(b^#())
              , 3: b^#() -> c_2()
              , 4: c^#() -> c_3()
              , 5: activate^#(n__b()) -> c_4(b^#())
              , 6: activate^#(n__c()) -> c_5(c^#())
              , 7: activate^#(X) -> c_6(X)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
                |
                |->{2}                                                   [    YES(?,O(1))     ]
                |   |
                |   `->{3}                                               [    YES(?,O(1))     ]
                |
                `->{4}                                                   [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
                |
                `->{3}                                                   [    YES(?,O(1))     ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  c() -> b()
                , c() -> n__c()
                , b() -> n__b()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {1, 2, 3},
                 Uargs(c_0) = {1}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                n__b() = [0]
                         [3]
                         [3]
                n__c() = [0]
                         [1]
                         [3]
                c() = [3]
                      [3]
                      [3]
                b() = [1]
                      [3]
                      [3]
                activate(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                f^#(x1, x2, x3) = [1 0 1] x1 + [3 3 3] x2 + [1 3 1] x3 + [0]
                                  [3 3 3]      [0 0 0]      [3 3 3]      [0]
                                  [3 3 3]      [0 0 0]      [3 3 3]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                b^#() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                activate^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {f^#(n__b(), X, n__c()) -> c_0(f^#(X, c(), X))}
               Weak Rules:
                 {  c() -> b()
                  , c() -> n__c()
                  , b() -> n__b()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                n__b() = [0]
                         [0]
                         [0]
                n__c() = [0]
                         [0]
                         [0]
                c() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                activate(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                b^#() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                activate^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {activate^#(n__b()) -> c_4(b^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__b() = [2]
                         [2]
                         [2]
                b^#() = [2]
                        [2]
                        [0]
                activate^#(x1) = [0 2 2] x1 + [7]
                                 [2 2 0]      [7]
                                 [0 0 0]      [7]
                c_4(x1) = [2 2 0] x1 + [1]
                          [0 0 0]      [7]
                          [2 0 0]      [3]
           
           * Path {5}->{3}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {1}, Uargs(c_5) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                n__b() = [0]
                         [0]
                         [0]
                n__c() = [0]
                         [0]
                         [0]
                c() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                activate(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                b^#() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                activate^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {b^#() -> c_2()}
               Weak Rules: {activate^#(n__b()) -> c_4(b^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__b() = [2]
                         [6]
                         [2]
                b^#() = [2]
                        [2]
                        [2]
                c_2() = [1]
                        [0]
                        [0]
                activate^#(x1) = [2 0 2] x1 + [7]
                                 [0 2 0]      [3]
                                 [2 0 0]      [7]
                c_4(x1) = [2 2 0] x1 + [2]
                          [2 2 2]      [3]
                          [2 2 0]      [3]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                n__b() = [0]
                         [0]
                         [0]
                n__c() = [0]
                         [0]
                         [0]
                c() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                activate(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                b^#() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                activate^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {activate^#(n__c()) -> c_5(c^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [2]
                         [2]
                         [2]
                c^#() = [2]
                        [2]
                        [0]
                activate^#(x1) = [0 2 2] x1 + [7]
                                 [2 2 0]      [7]
                                 [0 0 0]      [7]
                c_5(x1) = [2 2 0] x1 + [1]
                          [0 0 0]      [7]
                          [2 0 0]      [3]
           
           * Path {6}->{2}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {1}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                n__b() = [0]
                         [0]
                         [0]
                n__c() = [0]
                         [0]
                         [0]
                c() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                activate(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                b^#() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                activate^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {c^#() -> c_1(b^#())}
               Weak Rules: {activate^#(n__c()) -> c_5(c^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(c_1) = {}, Uargs(activate^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [0]
                         [2]
                         [2]
                c^#() = [2]
                        [2]
                        [2]
                c_1(x1) = [4 7 4] x1 + [1]
                          [4 7 4]      [2]
                          [4 4 7]      [2]
                b^#() = [0]
                        [0]
                        [0]
                activate^#(x1) = [0 2 2] x1 + [7]
                                 [0 2 2]      [7]
                                 [0 0 0]      [7]
                c_5(x1) = [2 2 2] x1 + [3]
                          [2 0 2]      [2]
                          [0 0 2]      [1]
           
           * Path {6}->{2}->{3}: YES(?,O(1))
             -------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {1}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {1}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                n__b() = [0]
                         [0]
                         [0]
                n__c() = [0]
                         [0]
                         [0]
                c() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                activate(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                b^#() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                activate^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {b^#() -> c_2()}
               Weak Rules:
                 {  c^#() -> c_1(b^#())
                  , activate^#(n__c()) -> c_5(c^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(c_1) = {1}, Uargs(activate^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [2]
                         [2]
                         [2]
                c^#() = [2]
                        [2]
                        [2]
                c_1(x1) = [2 7 4] x1 + [0]
                          [0 7 4]      [2]
                          [0 4 7]      [2]
                b^#() = [1]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                activate^#(x1) = [0 2 2] x1 + [7]
                                 [2 0 2]      [7]
                                 [0 2 2]      [7]
                c_5(x1) = [2 2 2] x1 + [3]
                          [2 2 2]      [3]
                          [0 0 2]      [7]
           
           * Path {6}->{4}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {1}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                n__b() = [0]
                         [0]
                         [0]
                n__c() = [0]
                         [0]
                         [0]
                c() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                activate(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                b^#() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                activate^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {c^#() -> c_3()}
               Weak Rules: {activate^#(n__c()) -> c_5(c^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [2]
                         [6]
                         [2]
                c^#() = [2]
                        [2]
                        [2]
                c_3() = [1]
                        [0]
                        [0]
                activate^#(x1) = [2 0 2] x1 + [7]
                                 [0 2 0]      [3]
                                 [2 0 0]      [7]
                c_5(x1) = [2 2 0] x1 + [2]
                          [2 2 2]      [3]
                          [2 2 0]      [3]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                n__b() = [0]
                         [0]
                         [0]
                n__c() = [0]
                         [0]
                         [0]
                c() = [0]
                      [0]
                      [0]
                b() = [0]
                      [0]
                      [0]
                activate(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                  [0 0 0]      [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c^#() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                b^#() = [0]
                        [0]
                        [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                activate^#(x1) = [3 3 3] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_6(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {activate^#(X) -> c_6(X)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                activate^#(x1) = [7 7 7] x1 + [7]
                                 [7 7 7]      [7]
                                 [7 7 7]      [7]
                c_6(x1) = [3 3 3] x1 + [0]
                          [3 1 3]      [1]
                          [1 1 1]      [1]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(n__b(), X, n__c()) -> c_0(f^#(X, c(), X))
              , 2: c^#() -> c_1(b^#())
              , 3: b^#() -> c_2()
              , 4: c^#() -> c_3()
              , 5: activate^#(n__b()) -> c_4(b^#())
              , 6: activate^#(n__c()) -> c_5(c^#())
              , 7: activate^#(X) -> c_6(X)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
                |
                |->{2}                                                   [    YES(?,O(1))     ]
                |   |
                |   `->{3}                                               [    YES(?,O(1))     ]
                |
                `->{4}                                                   [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
                |
                `->{3}                                                   [    YES(?,O(1))     ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  c() -> b()
                , c() -> n__c()
                , b() -> n__b()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {1, 2, 3},
                 Uargs(c_0) = {1}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                n__b() = [0]
                         [1]
                n__c() = [1]
                         [1]
                c() = [3]
                      [3]
                b() = [1]
                      [1]
                activate(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                f^#(x1, x2, x3) = [1 0] x1 + [3 3] x2 + [1 3] x3 + [0]
                                  [3 3]      [0 0]      [3 3]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c^#() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                b^#() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                activate^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {f^#(n__b(), X, n__c()) -> c_0(f^#(X, c(), X))}
               Weak Rules:
                 {  c() -> b()
                  , c() -> n__c()
                  , b() -> n__b()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                n__b() = [0]
                         [0]
                n__c() = [0]
                         [0]
                c() = [0]
                      [0]
                b() = [0]
                      [0]
                activate(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c^#() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                b^#() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                activate^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {activate^#(n__b()) -> c_4(b^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__b() = [2]
                         [2]
                b^#() = [0]
                        [2]
                activate^#(x1) = [2 2] x1 + [7]
                                 [2 0]      [7]
                c_4(x1) = [0 2] x1 + [3]
                          [0 2]      [3]
           
           * Path {5}->{3}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {1}, Uargs(c_5) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                n__b() = [0]
                         [0]
                n__c() = [0]
                         [0]
                c() = [0]
                      [0]
                b() = [0]
                      [0]
                activate(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c^#() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                b^#() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                activate^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {b^#() -> c_2()}
               Weak Rules: {activate^#(n__b()) -> c_4(b^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__b() = [2]
                         [2]
                b^#() = [2]
                        [2]
                c_2() = [1]
                        [0]
                activate^#(x1) = [0 0] x1 + [7]
                                 [1 2]      [7]
                c_4(x1) = [2 0] x1 + [2]
                          [2 2]      [3]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                n__b() = [0]
                         [0]
                n__c() = [0]
                         [0]
                c() = [0]
                      [0]
                b() = [0]
                      [0]
                activate(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c^#() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                b^#() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                activate^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {activate^#(n__c()) -> c_5(c^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [2]
                         [2]
                c^#() = [0]
                        [2]
                activate^#(x1) = [2 2] x1 + [7]
                                 [2 0]      [7]
                c_5(x1) = [0 2] x1 + [3]
                          [0 2]      [3]
           
           * Path {6}->{2}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {1}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                n__b() = [0]
                         [0]
                n__c() = [0]
                         [0]
                c() = [0]
                      [0]
                b() = [0]
                      [0]
                activate(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c^#() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                b^#() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                activate^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {c^#() -> c_1(b^#())}
               Weak Rules: {activate^#(n__c()) -> c_5(c^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(c_1) = {}, Uargs(activate^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [2]
                         [2]
                c^#() = [2]
                        [2]
                c_1(x1) = [4 0] x1 + [1]
                          [4 0]      [2]
                b^#() = [0]
                        [4]
                activate^#(x1) = [2 2] x1 + [6]
                                 [2 0]      [7]
                c_5(x1) = [4 0] x1 + [3]
                          [2 2]      [3]
           
           * Path {6}->{2}->{3}: YES(?,O(1))
             -------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {1}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {1}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                n__b() = [0]
                         [0]
                n__c() = [0]
                         [0]
                c() = [0]
                      [0]
                b() = [0]
                      [0]
                activate(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c^#() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                b^#() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                activate^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {b^#() -> c_2()}
               Weak Rules:
                 {  c^#() -> c_1(b^#())
                  , activate^#(n__c()) -> c_5(c^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(c_1) = {1}, Uargs(activate^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [2]
                         [0]
                c^#() = [2]
                        [2]
                c_1(x1) = [2 4] x1 + [0]
                          [0 7]      [2]
                b^#() = [1]
                        [0]
                c_2() = [0]
                        [0]
                activate^#(x1) = [2 0] x1 + [6]
                                 [0 0]      [7]
                c_5(x1) = [2 2] x1 + [2]
                          [2 0]      [2]
           
           * Path {6}->{4}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {1}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                n__b() = [0]
                         [0]
                n__c() = [0]
                         [0]
                c() = [0]
                      [0]
                b() = [0]
                      [0]
                activate(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c^#() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                b^#() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                activate^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {c^#() -> c_3()}
               Weak Rules: {activate^#(n__c()) -> c_5(c^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [2]
                         [2]
                c^#() = [2]
                        [2]
                c_3() = [1]
                        [0]
                activate^#(x1) = [0 0] x1 + [7]
                                 [1 2]      [7]
                c_5(x1) = [2 0] x1 + [2]
                          [2 2]      [3]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                n__b() = [0]
                         [0]
                n__c() = [0]
                         [0]
                c() = [0]
                      [0]
                b() = [0]
                      [0]
                activate(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [0 0]      [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c^#() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                b^#() = [0]
                        [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                activate^#(x1) = [3 3] x1 + [0]
                                 [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_6(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {activate^#(X) -> c_6(X)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                activate^#(x1) = [7 7] x1 + [7]
                                 [7 7]      [7]
                c_6(x1) = [1 3] x1 + [0]
                          [3 1]      [3]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(n__b(), X, n__c()) -> c_0(f^#(X, c(), X))
              , 2: c^#() -> c_1(b^#())
              , 3: b^#() -> c_2()
              , 4: c^#() -> c_3()
              , 5: activate^#(n__b()) -> c_4(b^#())
              , 6: activate^#(n__c()) -> c_5(c^#())
              , 7: activate^#(X) -> c_6(X)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [    YES(?,O(1))     ]
             
             ->{6}                                                       [    YES(?,O(1))     ]
                |
                |->{2}                                                   [    YES(?,O(1))     ]
                |   |
                |   `->{3}                                               [    YES(?,O(1))     ]
                |
                `->{4}                                                   [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
                |
                `->{3}                                                   [    YES(?,O(1))     ]
             
             ->{1}                                                       [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1}: MAYBE
             ---------------
             
             The usable rules for this path are:
             
               {  c() -> b()
                , c() -> n__c()
                , b() -> n__b()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {1, 2, 3},
                 Uargs(c_0) = {1}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                n__b() = [0]
                n__c() = [2]
                c() = [3]
                b() = [1]
                activate(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [1] x1 + [3] x2 + [1] x3 + [0]
                c_0(x1) = [1] x1 + [0]
                c^#() = [0]
                c_1(x1) = [0] x1 + [0]
                b^#() = [0]
                c_2() = [0]
                c_3() = [0]
                activate^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {f^#(n__b(), X, n__c()) -> c_0(f^#(X, c(), X))}
               Weak Rules:
                 {  c() -> b()
                  , c() -> n__c()
                  , b() -> n__b()}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                n__b() = [0]
                n__c() = [0]
                c() = [0]
                b() = [0]
                activate(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                c^#() = [0]
                c_1(x1) = [0] x1 + [0]
                b^#() = [0]
                c_2() = [0]
                c_3() = [0]
                activate^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {activate^#(n__b()) -> c_4(b^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__b() = [2]
                b^#() = [2]
                activate^#(x1) = [2] x1 + [5]
                c_4(x1) = [2] x1 + [3]
           
           * Path {5}->{3}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {1}, Uargs(c_5) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                n__b() = [0]
                n__c() = [0]
                c() = [0]
                b() = [0]
                activate(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                c^#() = [0]
                c_1(x1) = [0] x1 + [0]
                b^#() = [0]
                c_2() = [0]
                c_3() = [0]
                activate^#(x1) = [0] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {b^#() -> c_2()}
               Weak Rules: {activate^#(n__b()) -> c_4(b^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__b() = [0]
                b^#() = [2]
                c_2() = [1]
                activate^#(x1) = [0] x1 + [6]
                c_4(x1) = [2] x1 + [2]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                n__b() = [0]
                n__c() = [0]
                c() = [0]
                b() = [0]
                activate(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                c^#() = [0]
                c_1(x1) = [0] x1 + [0]
                b^#() = [0]
                c_2() = [0]
                c_3() = [0]
                activate^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {activate^#(n__c()) -> c_5(c^#())}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [2]
                c^#() = [2]
                activate^#(x1) = [2] x1 + [5]
                c_5(x1) = [2] x1 + [3]
           
           * Path {6}->{2}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {1}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                n__b() = [0]
                n__c() = [0]
                c() = [0]
                b() = [0]
                activate(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                c^#() = [0]
                c_1(x1) = [0] x1 + [0]
                b^#() = [0]
                c_2() = [0]
                c_3() = [0]
                activate^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [1] x1 + [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {c^#() -> c_1(b^#())}
               Weak Rules: {activate^#(n__c()) -> c_5(c^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(c_1) = {}, Uargs(activate^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [2]
                c^#() = [2]
                c_1(x1) = [0] x1 + [1]
                b^#() = [7]
                activate^#(x1) = [2] x1 + [7]
                c_5(x1) = [4] x1 + [3]
           
           * Path {6}->{2}->{3}: YES(?,O(1))
             -------------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {1}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {1}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                n__b() = [0]
                n__c() = [0]
                c() = [0]
                b() = [0]
                activate(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                c^#() = [0]
                c_1(x1) = [1] x1 + [0]
                b^#() = [0]
                c_2() = [0]
                c_3() = [0]
                activate^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [1] x1 + [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {b^#() -> c_2()}
               Weak Rules:
                 {  c^#() -> c_1(b^#())
                  , activate^#(n__c()) -> c_5(c^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(c_1) = {1}, Uargs(activate^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [2]
                c^#() = [2]
                c_1(x1) = [2] x1 + [0]
                b^#() = [1]
                c_2() = [0]
                activate^#(x1) = [2] x1 + [7]
                c_5(x1) = [2] x1 + [6]
           
           * Path {6}->{4}: YES(?,O(1))
             --------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {1}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                n__b() = [0]
                n__c() = [0]
                c() = [0]
                b() = [0]
                activate(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                c^#() = [0]
                c_1(x1) = [0] x1 + [0]
                b^#() = [0]
                c_2() = [0]
                c_3() = [0]
                activate^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [1] x1 + [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {c^#() -> c_3()}
               Weak Rules: {activate^#(n__c()) -> c_5(c^#())}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_5) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                n__c() = [0]
                c^#() = [2]
                c_3() = [1]
                activate^#(x1) = [0] x1 + [6]
                c_5(x1) = [2] x1 + [2]
           
           * Path {7}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(activate) = {}, Uargs(f^#) = {},
                 Uargs(c_0) = {}, Uargs(c_1) = {}, Uargs(activate^#) = {},
                 Uargs(c_4) = {}, Uargs(c_5) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                n__b() = [0]
                n__c() = [0]
                c() = [0]
                b() = [0]
                activate(x1) = [0] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                c_0(x1) = [0] x1 + [0]
                c^#() = [0]
                c_1(x1) = [0] x1 + [0]
                b^#() = [0]
                c_2() = [0]
                c_3() = [0]
                activate^#(x1) = [3] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
                c_6(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {activate^#(X) -> c_6(X)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                activate^#(x1) = [7] x1 + [7]
                c_6(x1) = [1] x1 + [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.