Problem Strategy outermost added 08 Ex2 Luc03b

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputStrategy outermost added 08 Ex2 Luc03b

stdout:

MAYBE

Problem:
 fst(0(),Z) -> nil()
 fst(s(X),cons(Y,Z)) -> cons(Y,fst(X,Z))
 from(X) -> cons(X,from(s(X)))
 add(0(),X) -> X
 add(s(X),Y) -> s(add(X,Y))
 len(nil()) -> 0()
 len(cons(X,Z)) -> s(len(Z))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputStrategy outermost added 08 Ex2 Luc03b

stdout:

MAYBE
 Warning when parsing problem:
                             
                               Unsupported strategy 'OUTERMOST'

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputStrategy outermost added 08 Ex2 Luc03b

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  fst(0(), Z) -> nil()
     , fst(s(X), cons(Y, Z)) -> cons(Y, fst(X, Z))
     , from(X) -> cons(X, from(s(X)))
     , add(0(), X) -> X
     , add(s(X), Y) -> s(add(X, Y))
     , len(nil()) -> 0()
     , len(cons(X, Z)) -> s(len(Z))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fst^#(0(), Z) -> c_0()
              , 2: fst^#(s(X), cons(Y, Z)) -> c_1(fst^#(X, Z))
              , 3: from^#(X) -> c_2(from^#(s(X)))
              , 4: add^#(0(), X) -> c_3()
              , 5: add^#(s(X), Y) -> c_4(add^#(X, Y))
              , 6: len^#(nil()) -> c_5()
              , 7: len^#(cons(X, Z)) -> c_6(len^#(Z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [   YES(?,O(n^2))    ]
                |
                `->{6}                                                   [   YES(?,O(n^2))    ]
             
             ->{5}                                                       [   YES(?,O(n^2))    ]
                |
                `->{4}                                                   [   YES(?,O(n^2))    ]
             
             ->{3}                                                       [       MAYBE        ]
             
             ->{2}                                                       [   YES(?,O(n^2))    ]
                |
                `->{1}                                                   [   YES(?,O(n^1))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {1}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_4) = {}, Uargs(len^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                cons(x1, x2) = [0 0 0] x1 + [1 3 0] x2 + [0]
                               [0 0 0]      [0 1 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                len(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fst^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [3 3 3]      [3 3 3]      [0]
                                [3 3 3]      [3 3 3]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                add^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                len^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {fst^#(s(X), cons(Y, Z)) -> c_1(fst^#(X, Z))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(cons) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 1 0] x1 + [0]
                        [0 1 0]      [2]
                        [0 0 0]      [0]
                cons(x1, x2) = [0 0 0] x1 + [1 2 2] x2 + [0]
                               [0 0 0]      [0 1 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                fst^#(x1, x2) = [0 4 0] x1 + [4 1 0] x2 + [0]
                                [0 0 0]      [2 0 0]      [0]
                                [4 0 0]      [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {1}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_4) = {}, Uargs(len^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                len(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fst^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                add^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                len^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {fst^#(0(), Z) -> c_0()}
               Weak Rules: {fst^#(s(X), cons(Y, Z)) -> c_1(fst^#(X, Z))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(cons) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                      [0]
                s(x1) = [1 4 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                cons(x1, x2) = [0 0 0] x1 + [1 2 0] x2 + [0]
                               [0 0 0]      [0 0 2]      [0]
                               [0 0 0]      [0 0 0]      [0]
                fst^#(x1, x2) = [2 0 0] x1 + [2 2 0] x2 + [0]
                                [2 0 0]      [4 0 0]      [0]
                                [0 0 0]      [4 4 0]      [0]
                c_0() = [1]
                        [0]
                        [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
           
           * Path {3}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {1},
                 Uargs(add^#) = {}, Uargs(c_4) = {}, Uargs(len^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [1 1 0] x1 + [0]
                        [0 0 1]      [0]
                        [0 0 0]      [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                len(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fst^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                from^#(x1) = [3 3 3] x1 + [0]
                             [3 3 3]      [0]
                             [3 3 3]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                add^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                len^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {from^#(X) -> c_2(from^#(s(X)))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_4) = {1}, Uargs(len^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                len(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fst^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                add^#(x1, x2) = [0 0 0] x1 + [3 3 3] x2 + [0]
                                [3 3 3]      [3 3 3]      [0]
                                [3 3 3]      [3 3 3]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                len^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {add^#(s(X), Y) -> c_4(add^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(add^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 2] x1 + [2]
                        [0 0 2]      [3]
                        [0 0 1]      [2]
                add^#(x1, x2) = [0 0 1] x1 + [0 0 0] x2 + [2]
                                [0 2 1]      [0 0 0]      [2]
                                [4 0 2]      [0 0 4]      [0]
                c_4(x1) = [1 0 0] x1 + [1]
                          [0 0 0]      [2]
                          [2 2 0]      [3]
           
           * Path {5}->{4}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_4) = {1}, Uargs(len^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                len(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fst^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                add^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                len^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {add^#(0(), X) -> c_3()}
               Weak Rules: {add^#(s(X), Y) -> c_4(add^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(add^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 2 0] x1 + [2]
                        [0 1 4]      [0]
                        [0 0 0]      [2]
                add^#(x1, x2) = [1 3 1] x1 + [0 0 0] x2 + [0]
                                [3 2 2]      [0 0 4]      [0]
                                [0 2 2]      [0 0 2]      [2]
                c_3() = [1]
                        [0]
                        [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 0 2]      [3]
                          [0 0 0]      [2]
           
           * Path {7}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_4) = {}, Uargs(len^#) = {},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                cons(x1, x2) = [0 0 0] x1 + [1 3 0] x2 + [0]
                               [0 0 0]      [0 1 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                len(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fst^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                add^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                len^#(x1) = [0 0 0] x1 + [0]
                            [3 3 3]      [0]
                            [3 3 3]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {len^#(cons(X, Z)) -> c_6(len^#(Z))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(len^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0 0] x1 + [1 2 2] x2 + [2]
                               [0 0 0]      [0 1 2]      [2]
                               [0 0 0]      [0 0 0]      [0]
                len^#(x1) = [0 1 0] x1 + [2]
                            [6 0 0]      [0]
                            [2 3 0]      [2]
                c_6(x1) = [1 0 0] x1 + [1]
                          [2 0 2]      [0]
                          [0 0 0]      [0]
           
           * Path {7}->{6}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_4) = {}, Uargs(len^#) = {},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                len(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fst^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                add^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                len^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {len^#(nil()) -> c_5()}
               Weak Rules: {len^#(cons(X, Z)) -> c_6(len^#(Z))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(len^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                cons(x1, x2) = [0 0 0] x1 + [1 1 0] x2 + [0]
                               [0 0 0]      [0 1 1]      [1]
                               [0 0 0]      [0 0 0]      [0]
                len^#(x1) = [2 2 2] x1 + [0]
                            [0 6 0]      [0]
                            [0 0 2]      [0]
                c_5() = [1]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [2]
                          [0 0 0]      [3]
                          [0 0 0]      [0]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fst^#(0(), Z) -> c_0()
              , 2: fst^#(s(X), cons(Y, Z)) -> c_1(fst^#(X, Z))
              , 3: from^#(X) -> c_2(from^#(s(X)))
              , 4: add^#(0(), X) -> c_3()
              , 5: add^#(s(X), Y) -> c_4(add^#(X, Y))
              , 6: len^#(nil()) -> c_5()
              , 7: len^#(cons(X, Z)) -> c_6(len^#(Z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [   YES(?,O(n^1))    ]
                |
                `->{6}                                                   [   YES(?,O(n^1))    ]
             
             ->{5}                                                       [   YES(?,O(n^1))    ]
                |
                `->{4}                                                   [         NA         ]
             
             ->{3}                                                       [       MAYBE        ]
             
             ->{2}                                                       [         NA         ]
                |
                `->{1}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {1}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_4) = {}, Uargs(len^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                nil() = [0]
                        [0]
                s(x1) = [1 3] x1 + [0]
                        [0 1]      [0]
                cons(x1, x2) = [0 0] x1 + [1 2] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                len(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fst^#(x1, x2) = [1 3] x1 + [3 3] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                add^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                len^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{1}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {1}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_4) = {}, Uargs(len^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                len(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fst^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                add^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                len^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {1},
                 Uargs(add^#) = {}, Uargs(c_4) = {}, Uargs(len^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                nil() = [0]
                        [0]
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                len(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fst^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                from^#(x1) = [3 3] x1 + [0]
                             [3 3]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                add^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                len^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {from^#(X) -> c_2(from^#(s(X)))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_4) = {1}, Uargs(len^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                nil() = [0]
                        [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                len(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fst^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                add^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                len^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {add^#(s(X), Y) -> c_4(add^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(add^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                add^#(x1, x2) = [0 1] x1 + [0 0] x2 + [0]
                                [0 0]      [0 4]      [4]
                c_4(x1) = [1 0] x1 + [0]
                          [0 0]      [3]
           
           * Path {5}->{4}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_4) = {1}, Uargs(len^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                len(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fst^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                add^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                len^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_4) = {}, Uargs(len^#) = {},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [1 2] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                len(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fst^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                add^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                len^#(x1) = [3 3] x1 + [0]
                            [3 3]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {len^#(cons(X, Z)) -> c_6(len^#(Z))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(len^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                               [0 0]      [0 1]      [1]
                len^#(x1) = [0 1] x1 + [1]
                            [0 0]      [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {7}->{6}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_4) = {}, Uargs(len^#) = {},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                len(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fst^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                add^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3() = [0]
                        [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                len^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {len^#(nil()) -> c_5()}
               Weak Rules: {len^#(cons(X, Z)) -> c_6(len^#(Z))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(len^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                cons(x1, x2) = [0 0] x1 + [1 2] x2 + [1]
                               [0 0]      [0 0]      [3]
                len^#(x1) = [1 2] x1 + [2]
                            [6 1]      [0]
                c_5() = [1]
                        [0]
                c_6(x1) = [1 0] x1 + [5]
                          [2 0]      [3]
    
    3) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    4) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fst^#(0(), Z) -> c_0()
              , 2: fst^#(s(X), cons(Y, Z)) -> c_1(fst^#(X, Z))
              , 3: from^#(X) -> c_2(from^#(s(X)))
              , 4: add^#(0(), X) -> c_3()
              , 5: add^#(s(X), Y) -> c_4(add^#(X, Y))
              , 6: len^#(nil()) -> c_5()
              , 7: len^#(cons(X, Z)) -> c_6(len^#(Z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [         NA         ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{5}                                                       [         NA         ]
                |
                `->{4}                                                   [         NA         ]
             
             ->{3}                                                       [       MAYBE        ]
             
             ->{2}                                                       [         NA         ]
                |
                `->{1}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {1}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_4) = {}, Uargs(len^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                nil() = [0]
                s(x1) = [1] x1 + [0]
                cons(x1, x2) = [0] x1 + [1] x2 + [0]
                from(x1) = [0] x1 + [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                len(x1) = [0] x1 + [0]
                fst^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                from^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                add^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                len^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{1}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {1}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_4) = {}, Uargs(len^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                from(x1) = [0] x1 + [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                len(x1) = [0] x1 + [0]
                fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [1] x1 + [0]
                from^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                add^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                len^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {1},
                 Uargs(add^#) = {}, Uargs(c_4) = {}, Uargs(len^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                from(x1) = [0] x1 + [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                len(x1) = [0] x1 + [0]
                fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                from^#(x1) = [3] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                add^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                len^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {from^#(X) -> c_2(from^#(s(X)))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_4) = {1}, Uargs(len^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                nil() = [0]
                s(x1) = [1] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                from(x1) = [0] x1 + [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                len(x1) = [0] x1 + [0]
                fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                from^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                add^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                len^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}->{4}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_4) = {1}, Uargs(len^#) = {},
                 Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                from(x1) = [0] x1 + [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                len(x1) = [0] x1 + [0]
                fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                from^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                add^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [1] x1 + [0]
                len^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_4) = {}, Uargs(len^#) = {},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [1] x2 + [0]
                from(x1) = [0] x1 + [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                len(x1) = [0] x1 + [0]
                fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                from^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                add^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                len^#(x1) = [3] x1 + [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_4) = {}, Uargs(len^#) = {},
                 Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                from(x1) = [0] x1 + [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                len(x1) = [0] x1 + [0]
                fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1) = [0] x1 + [0]
                from^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                add^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3() = [0]
                c_4(x1) = [0] x1 + [0]
                len^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputStrategy outermost added 08 Ex2 Luc03b

stdout:

MAYBE
 Warning when parsing problem:
                             
                               Unsupported strategy 'OUTERMOST'

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputStrategy outermost added 08 Ex2 Luc03b

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  fst(0(), Z) -> nil()
     , fst(s(X), cons(Y, Z)) -> cons(Y, fst(X, Z))
     , from(X) -> cons(X, from(s(X)))
     , add(0(), X) -> X
     , add(s(X), Y) -> s(add(X, Y))
     , len(nil()) -> 0()
     , len(cons(X, Z)) -> s(len(Z))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fst^#(0(), Z) -> c_0()
              , 2: fst^#(s(X), cons(Y, Z)) -> c_1(Y, fst^#(X, Z))
              , 3: from^#(X) -> c_2(X, from^#(s(X)))
              , 4: add^#(0(), X) -> c_3(X)
              , 5: add^#(s(X), Y) -> c_4(add^#(X, Y))
              , 6: len^#(nil()) -> c_5()
              , 7: len^#(cons(X, Z)) -> c_6(len^#(Z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [   YES(?,O(n^2))    ]
                |
                `->{6}                                                   [   YES(?,O(n^2))    ]
             
             ->{5}                                                       [   YES(?,O(n^2))    ]
                |
                `->{4}                                                   [   YES(?,O(n^1))    ]
             
             ->{3}                                                       [       MAYBE        ]
             
             ->{2}                                                       [   YES(?,O(n^3))    ]
                |
                `->{1}                                                   [   YES(?,O(n^3))    ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: YES(?,O(n^3))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {2}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(len^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                cons(x1, x2) = [1 3 3] x1 + [1 3 0] x2 + [0]
                               [0 1 3]      [0 1 0]      [0]
                               [0 0 1]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                len(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fst^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [3 3 3]      [3 3 3]      [0]
                                [3 3 3]      [3 3 3]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                              [0 0 0]      [0 1 0]      [0]
                              [0 0 0]      [0 0 1]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                add^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                len^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {fst^#(s(X), cons(Y, Z)) -> c_1(Y, fst^#(X, Z))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(cons) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0 2] x1 + [0]
                        [0 0 4]      [0]
                        [0 0 1]      [1]
                cons(x1, x2) = [1 0 0] x1 + [1 4 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                fst^#(x1, x2) = [0 0 1] x1 + [0 0 0] x2 + [0]
                                [4 0 0]      [1 0 0]      [0]
                                [0 2 0]      [0 0 0]      [4]
                c_1(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                              [1 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [3]
           
           * Path {2}->{1}: YES(?,O(n^3))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {2}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(len^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                len(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fst^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1, x2) = [0 0 0] x1 + [1 0 0] x2 + [0]
                              [0 0 0]      [0 1 0]      [0]
                              [0 0 0]      [0 0 1]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                add^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                len^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^3))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {fst^#(0(), Z) -> c_0()}
               Weak Rules: {fst^#(s(X), cons(Y, Z)) -> c_1(Y, fst^#(X, Z))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(cons) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {2}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [3]
                      [0]
                      [2]
                s(x1) = [1 0 0] x1 + [2]
                        [0 1 0]      [0]
                        [0 0 1]      [1]
                cons(x1, x2) = [1 0 0] x1 + [1 2 2] x2 + [0]
                               [0 0 0]      [0 1 2]      [1]
                               [0 0 0]      [0 0 1]      [0]
                fst^#(x1, x2) = [2 0 0] x1 + [1 2 2] x2 + [2]
                                [4 1 0]      [4 0 0]      [0]
                                [0 0 6]      [5 2 0]      [0]
                c_0() = [1]
                        [0]
                        [0]
                c_1(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [5]
                              [0 0 0]      [2 0 0]      [2]
                              [1 0 0]      [0 0 0]      [7]
           
           * Path {3}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {2},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(len^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 1 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 1]      [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                len(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fst^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                from^#(x1) = [1 3 3] x1 + [0]
                             [3 3 3]      [0]
                             [3 3 3]      [0]
                c_2(x1, x2) = [0 1 0] x1 + [1 0 0] x2 + [0]
                              [0 0 0]      [0 1 0]      [0]
                              [0 0 0]      [0 0 1]      [0]
                add^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                len^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {from^#(X) -> c_2(X, from^#(s(X)))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {1},
                 Uargs(len^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [1 3 0] x1 + [0]
                        [0 1 0]      [0]
                        [0 0 0]      [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                len(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fst^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                add^#(x1, x2) = [0 0 0] x1 + [3 3 3] x2 + [0]
                                [3 3 3]      [3 3 3]      [0]
                                [3 3 3]      [3 3 3]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                len^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {add^#(s(X), Y) -> c_4(add^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(add^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 2 2] x1 + [2]
                        [0 0 2]      [3]
                        [0 0 1]      [2]
                add^#(x1, x2) = [0 0 1] x1 + [0 0 0] x2 + [2]
                                [0 2 1]      [0 0 0]      [2]
                                [4 0 2]      [0 0 4]      [0]
                c_4(x1) = [1 0 0] x1 + [1]
                          [0 0 0]      [2]
                          [2 2 0]      [3]
           
           * Path {5}->{4}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {1},
                 Uargs(len^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                len(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fst^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                add^#(x1, x2) = [0 0 0] x1 + [3 3 3] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                len^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {add^#(0(), X) -> c_3(X)}
               Weak Rules: {add^#(s(X), Y) -> c_4(add^#(X, Y))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                      [2]
                s(x1) = [1 2 2] x1 + [2]
                        [0 0 2]      [2]
                        [0 0 0]      [2]
                add^#(x1, x2) = [2 2 2] x1 + [0 0 0] x2 + [0]
                                [2 2 2]      [4 4 4]      [0]
                                [2 2 2]      [4 0 4]      [0]
                c_3(x1) = [0 0 0] x1 + [1]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [1 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [2]
           
           * Path {7}: YES(?,O(n^2))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(len^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                cons(x1, x2) = [0 0 0] x1 + [1 3 0] x2 + [0]
                               [0 0 0]      [0 1 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                len(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fst^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                add^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                len^#(x1) = [0 0 0] x1 + [0]
                            [3 3 3]      [0]
                            [3 3 3]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {len^#(cons(X, Z)) -> c_6(len^#(Z))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(len^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0 0] x1 + [1 2 2] x2 + [2]
                               [0 0 0]      [0 1 2]      [2]
                               [0 0 0]      [0 0 0]      [0]
                len^#(x1) = [0 1 0] x1 + [2]
                            [6 0 0]      [0]
                            [2 3 0]      [2]
                c_6(x1) = [1 0 0] x1 + [1]
                          [2 0 2]      [0]
                          [0 0 0]      [0]
           
           * Path {7}->{6}: YES(?,O(n^2))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(len^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                nil() = [0]
                        [0]
                        [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                cons(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                from(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                add(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                len(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                fst^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0() = [0]
                        [0]
                        [0]
                c_1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                from^#(x1) = [0 0 0] x1 + [0]
                             [0 0 0]      [0]
                             [0 0 0]      [0]
                c_2(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                add^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                len^#(x1) = [0 0 0] x1 + [0]
                            [0 0 0]      [0]
                            [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^2))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {len^#(nil()) -> c_5()}
               Weak Rules: {len^#(cons(X, Z)) -> c_6(len^#(Z))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(len^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                        [2]
                cons(x1, x2) = [0 0 0] x1 + [1 1 0] x2 + [0]
                               [0 0 0]      [0 1 1]      [1]
                               [0 0 0]      [0 0 0]      [0]
                len^#(x1) = [2 2 2] x1 + [0]
                            [0 6 0]      [0]
                            [0 0 2]      [0]
                c_5() = [1]
                        [0]
                        [0]
                c_6(x1) = [1 0 0] x1 + [2]
                          [0 0 0]      [3]
                          [0 0 0]      [0]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fst^#(0(), Z) -> c_0()
              , 2: fst^#(s(X), cons(Y, Z)) -> c_1(Y, fst^#(X, Z))
              , 3: from^#(X) -> c_2(X, from^#(s(X)))
              , 4: add^#(0(), X) -> c_3(X)
              , 5: add^#(s(X), Y) -> c_4(add^#(X, Y))
              , 6: len^#(nil()) -> c_5()
              , 7: len^#(cons(X, Z)) -> c_6(len^#(Z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [   YES(?,O(n^1))    ]
                |
                `->{6}                                                   [   YES(?,O(n^1))    ]
             
             ->{5}                                                       [   YES(?,O(n^1))    ]
                |
                `->{4}                                                   [         NA         ]
             
             ->{3}                                                       [       MAYBE        ]
             
             ->{2}                                                       [         NA         ]
                |
                `->{1}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {2}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(len^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                nil() = [0]
                        [0]
                s(x1) = [1 3] x1 + [0]
                        [0 1]      [0]
                cons(x1, x2) = [1 1] x1 + [1 2] x2 + [0]
                               [0 1]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                len(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fst^#(x1, x2) = [1 3] x1 + [3 3] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_0() = [0]
                        [0]
                c_1(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [0 0]      [0 1]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                add^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                len^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{1}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {2}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(len^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                len(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fst^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                              [0 0]      [0 1]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                add^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                len^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {2},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(len^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                nil() = [0]
                        [0]
                s(x1) = [1 1] x1 + [0]
                        [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                len(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fst^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                from^#(x1) = [1 3] x1 + [0]
                             [3 3]      [0]
                c_2(x1, x2) = [0 1] x1 + [1 0] x2 + [0]
                              [0 0]      [0 1]      [0]
                add^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                len^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {from^#(X) -> c_2(X, from^#(s(X)))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {1},
                 Uargs(len^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                nil() = [0]
                        [0]
                s(x1) = [1 2] x1 + [0]
                        [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                len(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fst^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                add^#(x1, x2) = [3 3] x1 + [3 3] x2 + [0]
                                [3 3]      [3 3]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                len^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {add^#(s(X), Y) -> c_4(add^#(X, Y))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(add^#) = {}, Uargs(c_4) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                s(x1) = [1 0] x1 + [0]
                        [0 1]      [1]
                add^#(x1, x2) = [0 1] x1 + [0 0] x2 + [0]
                                [0 0]      [0 4]      [4]
                c_4(x1) = [1 0] x1 + [0]
                          [0 0]      [3]
           
           * Path {5}->{4}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {1},
                 Uargs(len^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                len(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fst^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                add^#(x1, x2) = [0 0] x1 + [3 3] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                len^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: YES(?,O(n^1))
             -----------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(len^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [1 2] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                len(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fst^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                add^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                len^#(x1) = [3 3] x1 + [0]
                            [3 3]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {len^#(cons(X, Z)) -> c_6(len^#(Z))}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(len^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                cons(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                               [0 0]      [0 1]      [1]
                len^#(x1) = [0 1] x1 + [1]
                            [0 0]      [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
           
           * Path {7}->{6}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(len^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                nil() = [0]
                        [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                cons(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                from(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                add(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                len(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                fst^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0() = [0]
                        [0]
                c_1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                from^#(x1) = [0 0] x1 + [0]
                             [0 0]      [0]
                c_2(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                add^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                len^#(x1) = [0 0] x1 + [0]
                            [0 0]      [0]
                c_5() = [0]
                        [0]
                c_6(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {len^#(nil()) -> c_5()}
               Weak Rules: {len^#(cons(X, Z)) -> c_6(len^#(Z))}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(cons) = {}, Uargs(len^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                nil() = [2]
                        [2]
                cons(x1, x2) = [0 0] x1 + [1 2] x2 + [1]
                               [0 0]      [0 0]      [3]
                len^#(x1) = [1 2] x1 + [2]
                            [6 1]      [0]
                c_5() = [1]
                        [0]
                c_6(x1) = [1 0] x1 + [5]
                          [2 0]      [3]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: fst^#(0(), Z) -> c_0()
              , 2: fst^#(s(X), cons(Y, Z)) -> c_1(Y, fst^#(X, Z))
              , 3: from^#(X) -> c_2(X, from^#(s(X)))
              , 4: add^#(0(), X) -> c_3(X)
              , 5: add^#(s(X), Y) -> c_4(add^#(X, Y))
              , 6: len^#(nil()) -> c_5()
              , 7: len^#(cons(X, Z)) -> c_6(len^#(Z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{7}                                                       [         NA         ]
                |
                `->{6}                                                   [         NA         ]
             
             ->{5}                                                       [         NA         ]
                |
                `->{4}                                                   [         NA         ]
             
             ->{3}                                                       [       MAYBE        ]
             
             ->{2}                                                       [         NA         ]
                |
                `->{1}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {2}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(len^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                nil() = [0]
                s(x1) = [1] x1 + [0]
                cons(x1, x2) = [1] x1 + [1] x2 + [0]
                from(x1) = [0] x1 + [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                len(x1) = [0] x1 + [0]
                fst^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0() = [0]
                c_1(x1, x2) = [1] x1 + [1] x2 + [0]
                from^#(x1) = [0] x1 + [0]
                c_2(x1, x2) = [0] x1 + [0] x2 + [0]
                add^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                len^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {2}->{1}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {2}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(len^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                from(x1) = [0] x1 + [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                len(x1) = [0] x1 + [0]
                fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1, x2) = [0] x1 + [1] x2 + [0]
                from^#(x1) = [0] x1 + [0]
                c_2(x1, x2) = [0] x1 + [0] x2 + [0]
                add^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                len^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}: MAYBE
             ---------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {2},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(len^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                from(x1) = [0] x1 + [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                len(x1) = [0] x1 + [0]
                fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1, x2) = [0] x1 + [0] x2 + [0]
                from^#(x1) = [3] x1 + [0]
                c_2(x1, x2) = [2] x1 + [1] x2 + [0]
                add^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                len^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {from^#(X) -> c_2(X, from^#(s(X)))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {1},
                 Uargs(len^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                nil() = [0]
                s(x1) = [1] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                from(x1) = [0] x1 + [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                len(x1) = [0] x1 + [0]
                fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1, x2) = [0] x1 + [0] x2 + [0]
                from^#(x1) = [0] x1 + [0]
                c_2(x1, x2) = [0] x1 + [0] x2 + [0]
                add^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                len^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}->{4}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {1},
                 Uargs(len^#) = {}, Uargs(c_6) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                from(x1) = [0] x1 + [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                len(x1) = [0] x1 + [0]
                fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1, x2) = [0] x1 + [0] x2 + [0]
                from^#(x1) = [0] x1 + [0]
                c_2(x1, x2) = [0] x1 + [0] x2 + [0]
                add^#(x1, x2) = [0] x1 + [3] x2 + [0]
                c_3(x1) = [1] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                len^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [0] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}: NA
             ------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(len^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [1] x2 + [0]
                from(x1) = [0] x1 + [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                len(x1) = [0] x1 + [0]
                fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1, x2) = [0] x1 + [0] x2 + [0]
                from^#(x1) = [0] x1 + [0]
                c_2(x1, x2) = [0] x1 + [0] x2 + [0]
                add^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                len^#(x1) = [3] x1 + [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {7}->{6}: NA
             -----------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(fst) = {}, Uargs(s) = {}, Uargs(cons) = {}, Uargs(from) = {},
                 Uargs(add) = {}, Uargs(len) = {}, Uargs(fst^#) = {},
                 Uargs(c_1) = {}, Uargs(from^#) = {}, Uargs(c_2) = {},
                 Uargs(add^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(len^#) = {}, Uargs(c_6) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                fst(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                nil() = [0]
                s(x1) = [0] x1 + [0]
                cons(x1, x2) = [0] x1 + [0] x2 + [0]
                from(x1) = [0] x1 + [0]
                add(x1, x2) = [0] x1 + [0] x2 + [0]
                len(x1) = [0] x1 + [0]
                fst^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0() = [0]
                c_1(x1, x2) = [0] x1 + [0] x2 + [0]
                from^#(x1) = [0] x1 + [0]
                c_2(x1, x2) = [0] x1 + [0] x2 + [0]
                add^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                len^#(x1) = [0] x1 + [0]
                c_5() = [0]
                c_6(x1) = [1] x1 + [0]
             
             We have not generated a proof for the resulting sub-problem.
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.