Problem Strategy outermost added 08 Ex4 4 Luc96b FR

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputStrategy outermost added 08 Ex4 4 Luc96b FR

stdout:

MAYBE

Problem:
 f(g(X),Y) -> f(X,n__f(n__g(X),activate(Y)))
 f(X1,X2) -> n__f(X1,X2)
 g(X) -> n__g(X)
 activate(n__f(X1,X2)) -> f(activate(X1),X2)
 activate(n__g(X)) -> g(activate(X))
 activate(X) -> X

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputStrategy outermost added 08 Ex4 4 Luc96b FR

stdout:

MAYBE
 Warning when parsing problem:
                             
                               Unsupported strategy 'OUTERMOST'

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputStrategy outermost added 08 Ex4 4 Luc96b FR

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
     , f(X1, X2) -> n__f(X1, X2)
     , g(X) -> n__g(X)
     , activate(n__f(X1, X2)) -> f(activate(X1), X2)
     , activate(n__g(X)) -> g(activate(X))
     , activate(X) -> X}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(g(X), Y) -> c_0(f^#(X, n__f(n__g(X), activate(Y))))
              , 2: f^#(X1, X2) -> c_1()
              , 3: g^#(X) -> c_2()
              , 4: activate^#(n__f(X1, X2)) -> c_3(f^#(activate(X1), X2))
              , 5: activate^#(n__g(X)) -> c_4(g^#(activate(X)))
              , 6: activate^#(X) -> c_5()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [     inherited      ]
                |
                `->{3}                                                   [       MAYBE        ]
             
             ->{4}                                                       [     inherited      ]
                |
                |->{1}                                                   [     inherited      ]
                |   |
                |   `->{2}                                               [         NA         ]
                |
                `->{2}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{1}->{2}.
           
           * Path {4}->{1}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{1}->{2}.
           
           * Path {4}->{1}->{2}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  activate(n__f(X1, X2)) -> f(activate(X1), X2)
                , activate(n__g(X)) -> g(activate(X))
                , activate(X) -> X
                , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                , f(X1, X2) -> n__f(X1, X2)
                , g(X) -> n__g(X)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{2}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  activate(n__f(X1, X2)) -> f(activate(X1), X2)
                , activate(n__g(X)) -> g(activate(X))
                , activate(X) -> X
                , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                , f(X1, X2) -> n__f(X1, X2)
                , g(X) -> n__g(X)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{3}.
           
           * Path {5}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  activate(n__f(X1, X2)) -> f(activate(X1), X2)
                , activate(n__g(X)) -> g(activate(X))
                , activate(X) -> X
                , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                , f(X1, X2) -> n__f(X1, X2)
                , g(X) -> n__g(X)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  activate^#(n__g(X)) -> c_4(g^#(activate(X)))
                  , g^#(X) -> c_2()
                  , activate(n__f(X1, X2)) -> f(activate(X1), X2)
                  , activate(n__g(X)) -> g(activate(X))
                  , activate(X) -> X
                  , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                  , f(X1, X2) -> n__f(X1, X2)
                  , g(X) -> n__g(X)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(n__f) = {}, Uargs(n__g) = {},
                 Uargs(activate) = {}, Uargs(f^#) = {}, Uargs(c_0) = {},
                 Uargs(g^#) = {}, Uargs(activate^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                n__f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                n__g(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                activate(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                f^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1() = [0]
                        [0]
                        [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                activate^#(x1) = [0 0 0] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {activate^#(X) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                activate^#(x1) = [0 0 0] x1 + [7]
                                 [0 0 0]      [7]
                                 [0 0 0]      [7]
                c_5() = [0]
                        [3]
                        [3]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(g(X), Y) -> c_0(f^#(X, n__f(n__g(X), activate(Y))))
              , 2: f^#(X1, X2) -> c_1()
              , 3: g^#(X) -> c_2()
              , 4: activate^#(n__f(X1, X2)) -> c_3(f^#(activate(X1), X2))
              , 5: activate^#(n__g(X)) -> c_4(g^#(activate(X)))
              , 6: activate^#(X) -> c_5()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [     inherited      ]
                |
                `->{3}                                                   [       MAYBE        ]
             
             ->{4}                                                       [     inherited      ]
                |
                |->{1}                                                   [     inherited      ]
                |   |
                |   `->{2}                                               [         NA         ]
                |
                `->{2}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{1}->{2}.
           
           * Path {4}->{1}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{1}->{2}.
           
           * Path {4}->{1}->{2}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  activate(n__f(X1, X2)) -> f(activate(X1), X2)
                , activate(n__g(X)) -> g(activate(X))
                , activate(X) -> X
                , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                , f(X1, X2) -> n__f(X1, X2)
                , g(X) -> n__g(X)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{2}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  activate(n__f(X1, X2)) -> f(activate(X1), X2)
                , activate(n__g(X)) -> g(activate(X))
                , activate(X) -> X
                , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                , f(X1, X2) -> n__f(X1, X2)
                , g(X) -> n__g(X)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{3}.
           
           * Path {5}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  activate(n__f(X1, X2)) -> f(activate(X1), X2)
                , activate(n__g(X)) -> g(activate(X))
                , activate(X) -> X
                , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                , f(X1, X2) -> n__f(X1, X2)
                , g(X) -> n__g(X)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  activate^#(n__g(X)) -> c_4(g^#(activate(X)))
                  , g^#(X) -> c_2()
                  , activate(n__f(X1, X2)) -> f(activate(X1), X2)
                  , activate(n__g(X)) -> g(activate(X))
                  , activate(X) -> X
                  , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                  , f(X1, X2) -> n__f(X1, X2)
                  , g(X) -> n__g(X)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(n__f) = {}, Uargs(n__g) = {},
                 Uargs(activate) = {}, Uargs(f^#) = {}, Uargs(c_0) = {},
                 Uargs(g^#) = {}, Uargs(activate^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                n__f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                n__g(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                activate(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                f^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1() = [0]
                        [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                activate^#(x1) = [0 0] x1 + [0]
                                 [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {activate^#(X) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                activate^#(x1) = [0 0] x1 + [7]
                                 [0 0]      [7]
                c_5() = [0]
                        [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(g(X), Y) -> c_0(f^#(X, n__f(n__g(X), activate(Y))))
              , 2: f^#(X1, X2) -> c_1()
              , 3: g^#(X) -> c_2()
              , 4: activate^#(n__f(X1, X2)) -> c_3(f^#(activate(X1), X2))
              , 5: activate^#(n__g(X)) -> c_4(g^#(activate(X)))
              , 6: activate^#(X) -> c_5()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [     inherited      ]
                |
                `->{3}                                                   [       MAYBE        ]
             
             ->{4}                                                       [     inherited      ]
                |
                |->{1}                                                   [     inherited      ]
                |   |
                |   `->{2}                                               [         NA         ]
                |
                `->{2}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{1}->{2}.
           
           * Path {4}->{1}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{1}->{2}.
           
           * Path {4}->{1}->{2}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  activate(n__f(X1, X2)) -> f(activate(X1), X2)
                , activate(n__g(X)) -> g(activate(X))
                , activate(X) -> X
                , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                , f(X1, X2) -> n__f(X1, X2)
                , g(X) -> n__g(X)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{2}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  activate(n__f(X1, X2)) -> f(activate(X1), X2)
                , activate(n__g(X)) -> g(activate(X))
                , activate(X) -> X
                , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                , f(X1, X2) -> n__f(X1, X2)
                , g(X) -> n__g(X)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{3}.
           
           * Path {5}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  activate(n__f(X1, X2)) -> f(activate(X1), X2)
                , activate(n__g(X)) -> g(activate(X))
                , activate(X) -> X
                , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                , f(X1, X2) -> n__f(X1, X2)
                , g(X) -> n__g(X)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  activate^#(n__g(X)) -> c_4(g^#(activate(X)))
                  , g^#(X) -> c_2()
                  , activate(n__f(X1, X2)) -> f(activate(X1), X2)
                  , activate(n__g(X)) -> g(activate(X))
                  , activate(X) -> X
                  , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                  , f(X1, X2) -> n__f(X1, X2)
                  , g(X) -> n__g(X)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(n__f) = {}, Uargs(n__g) = {},
                 Uargs(activate) = {}, Uargs(f^#) = {}, Uargs(c_0) = {},
                 Uargs(g^#) = {}, Uargs(activate^#) = {}, Uargs(c_3) = {},
                 Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                g(x1) = [0] x1 + [0]
                n__f(x1, x2) = [0] x1 + [0] x2 + [0]
                n__g(x1) = [0] x1 + [0]
                activate(x1) = [0] x1 + [0]
                f^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1() = [0]
                g^#(x1) = [0] x1 + [0]
                c_2() = [0]
                activate^#(x1) = [0] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {activate^#(X) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                activate^#(x1) = [0] x1 + [7]
                c_5() = [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputStrategy outermost added 08 Ex4 4 Luc96b FR

stdout:

MAYBE
 Warning when parsing problem:
                             
                               Unsupported strategy 'OUTERMOST'

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputStrategy outermost added 08 Ex4 4 Luc96b FR

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
     , f(X1, X2) -> n__f(X1, X2)
     , g(X) -> n__g(X)
     , activate(n__f(X1, X2)) -> f(activate(X1), X2)
     , activate(n__g(X)) -> g(activate(X))
     , activate(X) -> X}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(g(X), Y) -> c_0(f^#(X, n__f(n__g(X), activate(Y))))
              , 2: f^#(X1, X2) -> c_1(X1, X2)
              , 3: g^#(X) -> c_2(X)
              , 4: activate^#(n__f(X1, X2)) -> c_3(f^#(activate(X1), X2))
              , 5: activate^#(n__g(X)) -> c_4(g^#(activate(X)))
              , 6: activate^#(X) -> c_5(X)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [     inherited      ]
                |
                `->{3}                                                   [       MAYBE        ]
             
             ->{4}                                                       [     inherited      ]
                |
                |->{1}                                                   [     inherited      ]
                |   |
                |   `->{2}                                               [         NA         ]
                |
                `->{2}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{1}->{2}.
           
           * Path {4}->{1}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{1}->{2}.
           
           * Path {4}->{1}->{2}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  activate(n__f(X1, X2)) -> f(activate(X1), X2)
                , activate(n__g(X)) -> g(activate(X))
                , activate(X) -> X
                , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                , f(X1, X2) -> n__f(X1, X2)
                , g(X) -> n__g(X)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{2}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  activate(n__f(X1, X2)) -> f(activate(X1), X2)
                , activate(n__g(X)) -> g(activate(X))
                , activate(X) -> X
                , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                , f(X1, X2) -> n__f(X1, X2)
                , g(X) -> n__g(X)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{3}.
           
           * Path {5}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  activate(n__f(X1, X2)) -> f(activate(X1), X2)
                , activate(n__g(X)) -> g(activate(X))
                , activate(X) -> X
                , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                , f(X1, X2) -> n__f(X1, X2)
                , g(X) -> n__g(X)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  activate^#(n__g(X)) -> c_4(g^#(activate(X)))
                  , g^#(X) -> c_2(X)
                  , activate(n__f(X1, X2)) -> f(activate(X1), X2)
                  , activate(n__g(X)) -> g(activate(X))
                  , activate(X) -> X
                  , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                  , f(X1, X2) -> n__f(X1, X2)
                  , g(X) -> n__g(X)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(n__f) = {}, Uargs(n__g) = {},
                 Uargs(activate) = {}, Uargs(f^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(g^#) = {}, Uargs(c_2) = {},
                 Uargs(activate^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                n__f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                               [0 0 0]      [0 0 0]      [0]
                               [0 0 0]      [0 0 0]      [0]
                n__g(x1) = [0 0 0] x1 + [0]
                           [0 0 0]      [0]
                           [0 0 0]      [0]
                activate(x1) = [0 0 0] x1 + [0]
                               [0 0 0]      [0]
                               [0 0 0]      [0]
                f^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                g^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                activate^#(x1) = [3 3 3] x1 + [0]
                                 [0 0 0]      [0]
                                 [0 0 0]      [0]
                c_3(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {activate^#(X) -> c_5(X)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                activate^#(x1) = [7 7 7] x1 + [7]
                                 [7 7 7]      [7]
                                 [7 7 7]      [7]
                c_5(x1) = [3 3 3] x1 + [0]
                          [3 1 3]      [1]
                          [1 1 1]      [1]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(g(X), Y) -> c_0(f^#(X, n__f(n__g(X), activate(Y))))
              , 2: f^#(X1, X2) -> c_1(X1, X2)
              , 3: g^#(X) -> c_2(X)
              , 4: activate^#(n__f(X1, X2)) -> c_3(f^#(activate(X1), X2))
              , 5: activate^#(n__g(X)) -> c_4(g^#(activate(X)))
              , 6: activate^#(X) -> c_5(X)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [     inherited      ]
                |
                `->{3}                                                   [       MAYBE        ]
             
             ->{4}                                                       [     inherited      ]
                |
                |->{1}                                                   [     inherited      ]
                |   |
                |   `->{2}                                               [         NA         ]
                |
                `->{2}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{1}->{2}.
           
           * Path {4}->{1}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{1}->{2}.
           
           * Path {4}->{1}->{2}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  activate(n__f(X1, X2)) -> f(activate(X1), X2)
                , activate(n__g(X)) -> g(activate(X))
                , activate(X) -> X
                , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                , f(X1, X2) -> n__f(X1, X2)
                , g(X) -> n__g(X)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{2}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  activate(n__f(X1, X2)) -> f(activate(X1), X2)
                , activate(n__g(X)) -> g(activate(X))
                , activate(X) -> X
                , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                , f(X1, X2) -> n__f(X1, X2)
                , g(X) -> n__g(X)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{3}.
           
           * Path {5}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  activate(n__f(X1, X2)) -> f(activate(X1), X2)
                , activate(n__g(X)) -> g(activate(X))
                , activate(X) -> X
                , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                , f(X1, X2) -> n__f(X1, X2)
                , g(X) -> n__g(X)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  activate^#(n__g(X)) -> c_4(g^#(activate(X)))
                  , g^#(X) -> c_2(X)
                  , activate(n__f(X1, X2)) -> f(activate(X1), X2)
                  , activate(n__g(X)) -> g(activate(X))
                  , activate(X) -> X
                  , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                  , f(X1, X2) -> n__f(X1, X2)
                  , g(X) -> n__g(X)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(n__f) = {}, Uargs(n__g) = {},
                 Uargs(activate) = {}, Uargs(f^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(g^#) = {}, Uargs(c_2) = {},
                 Uargs(activate^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                n__f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                               [0 0]      [0 0]      [0]
                n__g(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
                activate(x1) = [0 0] x1 + [0]
                               [0 0]      [0]
                f^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                g^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                activate^#(x1) = [3 3] x1 + [0]
                                 [0 0]      [0]
                c_3(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {activate^#(X) -> c_5(X)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                activate^#(x1) = [7 7] x1 + [7]
                                 [7 7]      [7]
                c_5(x1) = [1 3] x1 + [0]
                          [3 1]      [3]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(g(X), Y) -> c_0(f^#(X, n__f(n__g(X), activate(Y))))
              , 2: f^#(X1, X2) -> c_1(X1, X2)
              , 3: g^#(X) -> c_2(X)
              , 4: activate^#(n__f(X1, X2)) -> c_3(f^#(activate(X1), X2))
              , 5: activate^#(n__g(X)) -> c_4(g^#(activate(X)))
              , 6: activate^#(X) -> c_5(X)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [     inherited      ]
                |
                `->{3}                                                   [       MAYBE        ]
             
             ->{4}                                                       [     inherited      ]
                |
                |->{1}                                                   [     inherited      ]
                |   |
                |   `->{2}                                               [         NA         ]
                |
                `->{2}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {4}: inherited
             -------------------
             
             This path is subsumed by the proof of path {4}->{1}->{2}.
           
           * Path {4}->{1}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {4}->{1}->{2}.
           
           * Path {4}->{1}->{2}: NA
             ----------------------
             
             The usable rules for this path are:
             
               {  activate(n__f(X1, X2)) -> f(activate(X1), X2)
                , activate(n__g(X)) -> g(activate(X))
                , activate(X) -> X
                , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                , f(X1, X2) -> n__f(X1, X2)
                , g(X) -> n__g(X)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {4}->{2}: NA
             -----------------
             
             The usable rules for this path are:
             
               {  activate(n__f(X1, X2)) -> f(activate(X1), X2)
                , activate(n__g(X)) -> g(activate(X))
                , activate(X) -> X
                , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                , f(X1, X2) -> n__f(X1, X2)
                , g(X) -> n__g(X)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: inherited
             -------------------
             
             This path is subsumed by the proof of path {5}->{3}.
           
           * Path {5}->{3}: MAYBE
             --------------------
             
             The usable rules for this path are:
             
               {  activate(n__f(X1, X2)) -> f(activate(X1), X2)
                , activate(n__g(X)) -> g(activate(X))
                , activate(X) -> X
                , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                , f(X1, X2) -> n__f(X1, X2)
                , g(X) -> n__g(X)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  activate^#(n__g(X)) -> c_4(g^#(activate(X)))
                  , g^#(X) -> c_2(X)
                  , activate(n__f(X1, X2)) -> f(activate(X1), X2)
                  , activate(n__g(X)) -> g(activate(X))
                  , activate(X) -> X
                  , f(g(X), Y) -> f(X, n__f(n__g(X), activate(Y)))
                  , f(X1, X2) -> n__f(X1, X2)
                  , g(X) -> n__g(X)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(n__f) = {}, Uargs(n__g) = {},
                 Uargs(activate) = {}, Uargs(f^#) = {}, Uargs(c_0) = {},
                 Uargs(c_1) = {}, Uargs(g^#) = {}, Uargs(c_2) = {},
                 Uargs(activate^#) = {}, Uargs(c_3) = {}, Uargs(c_4) = {},
                 Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                g(x1) = [0] x1 + [0]
                n__f(x1, x2) = [0] x1 + [0] x2 + [0]
                n__g(x1) = [0] x1 + [0]
                activate(x1) = [0] x1 + [0]
                f^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1, x2) = [0] x1 + [0] x2 + [0]
                g^#(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                activate^#(x1) = [3] x1 + [0]
                c_3(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                c_5(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {activate^#(X) -> c_5(X)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(activate^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                activate^#(x1) = [7] x1 + [7]
                c_5(x1) = [1] x1 + [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.