Problem TCT 09 ackantiinn2

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputTCT 09 ackantiinn2

stdout:

MAYBE

Problem:
 ack(0(),n) -> s(n)
 ack(s(m),0()) -> ack(m,s(0()))
 ack(s(m),s(n)) -> ack(m,ack(s(m),n))
 s(x()) -> r(x())
 0() -> z()

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputTCT 09 ackantiinn2

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputTCT 09 ackantiinn2

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  ack(0(), n) -> s(n)
     , ack(s(m), 0()) -> ack(m, s(0()))
     , ack(s(m), s(n)) -> ack(m, ack(s(m), n))
     , s(x()) -> r(x())
     , 0() -> z()}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: ack^#(0(), n) -> c_0(s^#(n))
              , 2: ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
              , 3: ack^#(s(m), s(n)) -> c_2(ack^#(m, ack(s(m), n)))
              , 4: s^#(x()) -> c_3()
              , 5: 0^#() -> c_4()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [     inherited      ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |   |
                |   `->{4}                                               [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [     inherited      ]
                    |
                    `->{1}                                               [     inherited      ]
                        |
                        `->{4}                                           [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}->{4}.
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules for this path are:
             
               {  s(x()) -> r(x())
                , 0() -> z()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {},
                 Uargs(c_0) = {}, Uargs(s^#) = {}, Uargs(c_1) = {1}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [3]
                      [3]
                      [3]
                s(x1) = [0 0 0] x1 + [3]
                        [0 0 0]      [3]
                        [3 3 3]      [3]
                x() = [0]
                      [0]
                      [0]
                r(x1) = [0 0 0] x1 + [1]
                        [0 0 0]      [3]
                        [0 0 1]      [3]
                z() = [0]
                      [1]
                      [1]
                ack^#(x1, x2) = [0 0 0] x1 + [3 3 3] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 3 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                s^#(x1) = [3 3 3] x1 + [0]
                          [1 1 1]      [0]
                          [3 3 3]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                0^#() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ack^#(0(), n) -> c_0(s^#(n))}
               Weak Rules:
                 {  ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
                  , s(x()) -> r(x())
                  , 0() -> z()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {}, Uargs(c_0) = {},
                 Uargs(s^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [3]
                      [2]
                s(x1) = [0 1 0] x1 + [4]
                        [4 3 0]      [1]
                        [0 0 1]      [0]
                x() = [0]
                      [4]
                      [2]
                r(x1) = [0 0 2] x1 + [3]
                        [0 0 2]      [6]
                        [0 0 1]      [0]
                z() = [0]
                      [1]
                      [0]
                ack^#(x1, x2) = [2 2 0] x1 + [0 0 0] x2 + [3]
                                [1 2 2]      [2 0 0]      [0]
                                [2 2 2]      [2 0 0]      [0]
                c_0(x1) = [2 2 2] x1 + [0]
                          [0 2 2]      [4]
                          [2 0 0]      [3]
                s^#(x1) = [0 0 0] x1 + [2]
                          [0 0 0]      [2]
                          [0 0 0]      [2]
                c_1(x1) = [4 0 0] x1 + [1]
                          [0 0 0]      [7]
                          [0 1 0]      [0]
           
           * Path {2}->{1}->{4}: YES(?,O(n^1))
             ---------------------------------
             
             The usable rules for this path are:
             
               {  s(x()) -> r(x())
                , 0() -> z()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {},
                 Uargs(c_0) = {1}, Uargs(s^#) = {}, Uargs(c_1) = {1},
                 Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [3]
                      [3]
                      [3]
                s(x1) = [0 0 0] x1 + [3]
                        [0 0 0]      [3]
                        [3 3 3]      [3]
                x() = [0]
                      [0]
                      [0]
                r(x1) = [0 0 0] x1 + [1]
                        [0 0 0]      [3]
                        [0 0 1]      [3]
                z() = [0]
                      [1]
                      [1]
                ack^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                s^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                0^#() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {s^#(x()) -> c_3()}
               Weak Rules:
                 {  ack^#(0(), n) -> c_0(s^#(n))
                  , ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
                  , s(x()) -> r(x())
                  , 0() -> z()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {}, Uargs(c_0) = {1},
                 Uargs(s^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 2 2]      [0]
                x() = [2]
                      [2]
                      [2]
                r(x1) = [0 0 0] x1 + [2]
                        [0 0 0]      [0]
                        [0 0 1]      [6]
                z() = [0]
                      [0]
                      [0]
                ack^#(x1, x2) = [2 0 0] x1 + [4 0 4] x2 + [0]
                                [0 0 0]      [0 0 4]      [0]
                                [0 0 0]      [0 2 2]      [0]
                c_0(x1) = [2 0 0] x1 + [2]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                s^#(x1) = [2 0 0] x1 + [0]
                          [2 2 0]      [0]
                          [0 0 2]      [0]
                c_1(x1) = [1 0 2] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 1]      [0]
                c_3() = [1]
                        [0]
                        [0]
           
           * Path {2}->{3}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}->{4}.
           
           * Path {2}->{3}->{1}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}->{4}.
           
           * Path {2}->{3}->{1}->{4}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  s(x()) -> r(x())
                , 0() -> z()
                , ack(0(), n) -> s(n)
                , ack(s(m), 0()) -> ack(m, s(0()))
                , ack(s(m), s(n)) -> ack(m, ack(s(m), n))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {},
                 Uargs(c_0) = {}, Uargs(s^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                x() = [0]
                      [0]
                      [0]
                r(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                z() = [0]
                      [0]
                      [0]
                ack^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                s^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                0^#() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {0^#() -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0^#() = [7]
                        [7]
                        [7]
                c_4() = [0]
                        [3]
                        [3]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: ack^#(0(), n) -> c_0(s^#(n))
              , 2: ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
              , 3: ack^#(s(m), s(n)) -> c_2(ack^#(m, ack(s(m), n)))
              , 4: s^#(x()) -> c_3()
              , 5: 0^#() -> c_4()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [     inherited      ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |   |
                |   `->{4}                                               [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [     inherited      ]
                    |
                    `->{1}                                               [     inherited      ]
                        |
                        `->{4}                                           [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}->{4}.
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules for this path are:
             
               {  s(x()) -> r(x())
                , 0() -> z()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {},
                 Uargs(c_0) = {}, Uargs(s^#) = {}, Uargs(c_1) = {1}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [3]
                      [3]
                s(x1) = [0 0] x1 + [3]
                        [3 3]      [3]
                x() = [0]
                      [0]
                r(x1) = [0 3] x1 + [1]
                        [0 1]      [3]
                z() = [0]
                      [1]
                ack^#(x1, x2) = [0 0] x1 + [3 3] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 3] x1 + [0]
                          [0 0]      [0]
                s^#(x1) = [3 3] x1 + [0]
                          [1 1]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3() = [0]
                        [0]
                0^#() = [0]
                        [0]
                c_4() = [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ack^#(0(), n) -> c_0(s^#(n))}
               Weak Rules:
                 {  ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
                  , s(x()) -> r(x())
                  , 0() -> z()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {}, Uargs(c_0) = {},
                 Uargs(s^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [2 0] x1 + [4]
                        [0 3]      [0]
                x() = [0]
                      [0]
                r(x1) = [0 0] x1 + [4]
                        [0 1]      [0]
                z() = [0]
                      [0]
                ack^#(x1, x2) = [2 3] x1 + [0 2] x2 + [0]
                                [2 2]      [0 0]      [0]
                c_0(x1) = [2 2] x1 + [1]
                          [0 0]      [6]
                s^#(x1) = [0 0] x1 + [2]
                          [0 0]      [2]
                c_1(x1) = [1 0] x1 + [0]
                          [0 0]      [6]
           
           * Path {2}->{1}->{4}: YES(?,O(n^1))
             ---------------------------------
             
             The usable rules for this path are:
             
               {  s(x()) -> r(x())
                , 0() -> z()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {},
                 Uargs(c_0) = {1}, Uargs(s^#) = {}, Uargs(c_1) = {1},
                 Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [3]
                      [3]
                s(x1) = [0 0] x1 + [3]
                        [3 3]      [3]
                x() = [0]
                      [0]
                r(x1) = [0 3] x1 + [1]
                        [0 1]      [3]
                z() = [1]
                      [1]
                ack^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                s^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3() = [0]
                        [0]
                0^#() = [0]
                        [0]
                c_4() = [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {s^#(x()) -> c_3()}
               Weak Rules:
                 {  ack^#(0(), n) -> c_0(s^#(n))
                  , ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
                  , s(x()) -> r(x())
                  , 0() -> z()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {}, Uargs(c_0) = {1},
                 Uargs(s^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [0 2] x1 + [0]
                        [1 0]      [0]
                x() = [2]
                      [2]
                r(x1) = [0 0] x1 + [0]
                        [0 1]      [0]
                z() = [0]
                      [0]
                ack^#(x1, x2) = [2 4] x1 + [4 4] x2 + [0]
                                [0 0]      [2 0]      [0]
                c_0(x1) = [2 0] x1 + [3]
                          [0 0]      [0]
                s^#(x1) = [2 2] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 3]      [3]
                c_3() = [1]
                        [0]
           
           * Path {2}->{3}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}->{4}.
           
           * Path {2}->{3}->{1}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}->{4}.
           
           * Path {2}->{3}->{1}->{4}: MAYBE
             ------------------------------
             
             The usable rules for this path are:
             
               {  s(x()) -> r(x())
                , 0() -> z()
                , ack(0(), n) -> s(n)
                , ack(s(m), 0()) -> ack(m, s(0()))
                , ack(s(m), s(n)) -> ack(m, ack(s(m), n))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  ack^#(0(), n) -> c_0(s^#(n))
                  , ack^#(s(m), s(n)) -> c_2(ack^#(m, ack(s(m), n)))
                  , ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
                  , s^#(x()) -> c_3()
                  , s(x()) -> r(x())
                  , 0() -> z()
                  , ack(0(), n) -> s(n)
                  , ack(s(m), 0()) -> ack(m, s(0()))
                  , ack(s(m), s(n)) -> ack(m, ack(s(m), n))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {},
                 Uargs(c_0) = {}, Uargs(s^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                x() = [0]
                      [0]
                r(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                z() = [0]
                      [0]
                ack^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                s^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3() = [0]
                        [0]
                0^#() = [0]
                        [0]
                c_4() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {0^#() -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0^#() = [7]
                        [7]
                c_4() = [0]
                        [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: ack^#(0(), n) -> c_0(s^#(n))
              , 2: ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
              , 3: ack^#(s(m), s(n)) -> c_2(ack^#(m, ack(s(m), n)))
              , 4: s^#(x()) -> c_3()
              , 5: 0^#() -> c_4()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [     inherited      ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |   |
                |   `->{4}                                               [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [     inherited      ]
                    |
                    `->{1}                                               [     inherited      ]
                        |
                        `->{4}                                           [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}->{4}.
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules for this path are:
             
               {  s(x()) -> r(x())
                , 0() -> z()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {},
                 Uargs(c_0) = {}, Uargs(s^#) = {}, Uargs(c_1) = {1}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [3]
                s(x1) = [3] x1 + [2]
                x() = [3]
                r(x1) = [1] x1 + [3]
                z() = [1]
                ack^#(x1, x2) = [0] x1 + [3] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                s^#(x1) = [1] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3() = [0]
                0^#() = [0]
                c_4() = [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {ack^#(0(), n) -> c_0(s^#(n))}
               Weak Rules:
                 {  ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
                  , s(x()) -> r(x())
                  , 0() -> z()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {}, Uargs(c_0) = {},
                 Uargs(s^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [2] x1 + [2]
                x() = [0]
                r(x1) = [1] x1 + [2]
                z() = [0]
                ack^#(x1, x2) = [2] x1 + [0] x2 + [4]
                c_0(x1) = [2] x1 + [3]
                s^#(x1) = [0] x1 + [2]
                c_1(x1) = [1] x1 + [3]
           
           * Path {2}->{1}->{4}: YES(?,O(n^1))
             ---------------------------------
             
             The usable rules for this path are:
             
               {  s(x()) -> r(x())
                , 0() -> z()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {},
                 Uargs(c_0) = {1}, Uargs(s^#) = {}, Uargs(c_1) = {1},
                 Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [3]
                s(x1) = [3] x1 + [2]
                x() = [3]
                r(x1) = [1] x1 + [3]
                z() = [0]
                ack^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                s^#(x1) = [0] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3() = [0]
                0^#() = [0]
                c_4() = [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {s^#(x()) -> c_3()}
               Weak Rules:
                 {  ack^#(0(), n) -> c_0(s^#(n))
                  , ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
                  , s(x()) -> r(x())
                  , 0() -> z()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {}, Uargs(c_0) = {1},
                 Uargs(s^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [0]
                x() = [3]
                r(x1) = [1] x1 + [0]
                z() = [0]
                ack^#(x1, x2) = [2] x1 + [4] x2 + [4]
                c_0(x1) = [2] x1 + [3]
                s^#(x1) = [2] x1 + [2]
                c_1(x1) = [1] x1 + [0]
                c_3() = [1]
           
           * Path {2}->{3}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}->{4}.
           
           * Path {2}->{3}->{1}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}->{4}.
           
           * Path {2}->{3}->{1}->{4}: MAYBE
             ------------------------------
             
             The usable rules for this path are:
             
               {  s(x()) -> r(x())
                , 0() -> z()
                , ack(0(), n) -> s(n)
                , ack(s(m), 0()) -> ack(m, s(0()))
                , ack(s(m), s(n)) -> ack(m, ack(s(m), n))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  ack^#(0(), n) -> c_0(s^#(n))
                  , ack^#(s(m), s(n)) -> c_2(ack^#(m, ack(s(m), n)))
                  , ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
                  , s^#(x()) -> c_3()
                  , s(x()) -> r(x())
                  , 0() -> z()
                  , ack(0(), n) -> s(n)
                  , ack(s(m), 0()) -> ack(m, s(0()))
                  , ack(s(m), s(n)) -> ack(m, ack(s(m), n))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {},
                 Uargs(c_0) = {}, Uargs(s^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                x() = [0]
                r(x1) = [0] x1 + [0]
                z() = [0]
                ack^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                s^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3() = [0]
                0^#() = [0]
                c_4() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {0^#() -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0^#() = [7]
                c_4() = [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputTCT 09 ackantiinn2

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputTCT 09 ackantiinn2

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  ack(0(), n) -> s(n)
     , ack(s(m), 0()) -> ack(m, s(0()))
     , ack(s(m), s(n)) -> ack(m, ack(s(m), n))
     , s(x()) -> r(x())
     , 0() -> z()}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: ack^#(0(), n) -> c_0(s^#(n))
              , 2: ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
              , 3: ack^#(s(m), s(n)) -> c_2(ack^#(m, ack(s(m), n)))
              , 4: s^#(x()) -> c_3()
              , 5: 0^#() -> c_4()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [     inherited      ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |   |
                |   `->{4}                                               [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [     inherited      ]
                    |
                    `->{1}                                               [     inherited      ]
                        |
                        `->{4}                                           [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}->{4}.
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules for this path are:
             
               {  s(x()) -> r(x())
                , 0() -> z()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {},
                 Uargs(c_0) = {}, Uargs(s^#) = {}, Uargs(c_1) = {1}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [3]
                      [3]
                      [3]
                s(x1) = [0 0 0] x1 + [3]
                        [0 0 0]      [3]
                        [3 3 3]      [3]
                x() = [0]
                      [0]
                      [0]
                r(x1) = [0 0 0] x1 + [1]
                        [0 0 0]      [3]
                        [0 0 1]      [3]
                z() = [0]
                      [1]
                      [1]
                ack^#(x1, x2) = [0 0 0] x1 + [3 3 3] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 3 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                s^#(x1) = [3 3 3] x1 + [0]
                          [1 1 1]      [0]
                          [3 3 3]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                0^#() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ack^#(0(), n) -> c_0(s^#(n))}
               Weak Rules:
                 {  ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
                  , s(x()) -> r(x())
                  , 0() -> z()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {}, Uargs(c_0) = {},
                 Uargs(s^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [3]
                      [2]
                s(x1) = [0 1 0] x1 + [4]
                        [4 3 0]      [1]
                        [0 0 1]      [0]
                x() = [0]
                      [4]
                      [2]
                r(x1) = [0 0 2] x1 + [3]
                        [0 0 2]      [6]
                        [0 0 1]      [0]
                z() = [0]
                      [1]
                      [0]
                ack^#(x1, x2) = [2 2 0] x1 + [0 0 0] x2 + [3]
                                [1 2 2]      [2 0 0]      [0]
                                [2 2 2]      [2 0 0]      [0]
                c_0(x1) = [2 2 2] x1 + [0]
                          [0 2 2]      [4]
                          [2 0 0]      [3]
                s^#(x1) = [0 0 0] x1 + [2]
                          [0 0 0]      [2]
                          [0 0 0]      [2]
                c_1(x1) = [4 0 0] x1 + [1]
                          [0 0 0]      [7]
                          [0 1 0]      [0]
           
           * Path {2}->{1}->{4}: YES(?,O(n^1))
             ---------------------------------
             
             The usable rules for this path are:
             
               {  s(x()) -> r(x())
                , 0() -> z()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {},
                 Uargs(c_0) = {1}, Uargs(s^#) = {}, Uargs(c_1) = {1},
                 Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [3]
                      [3]
                      [3]
                s(x1) = [0 0 0] x1 + [3]
                        [0 0 0]      [3]
                        [3 3 3]      [3]
                x() = [0]
                      [0]
                      [0]
                r(x1) = [0 0 0] x1 + [1]
                        [0 0 0]      [3]
                        [0 0 1]      [3]
                z() = [0]
                      [1]
                      [1]
                ack^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                s^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                0^#() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {s^#(x()) -> c_3()}
               Weak Rules:
                 {  ack^#(0(), n) -> c_0(s^#(n))
                  , ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
                  , s(x()) -> r(x())
                  , 0() -> z()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {}, Uargs(c_0) = {1},
                 Uargs(s^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                      [0]
                s(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 2 2]      [0]
                x() = [2]
                      [2]
                      [2]
                r(x1) = [0 0 0] x1 + [2]
                        [0 0 0]      [0]
                        [0 0 1]      [6]
                z() = [0]
                      [0]
                      [0]
                ack^#(x1, x2) = [2 0 0] x1 + [4 0 4] x2 + [0]
                                [0 0 0]      [0 0 4]      [0]
                                [0 0 0]      [0 2 2]      [0]
                c_0(x1) = [2 0 0] x1 + [2]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                s^#(x1) = [2 0 0] x1 + [0]
                          [2 2 0]      [0]
                          [0 0 2]      [0]
                c_1(x1) = [1 0 2] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 1]      [0]
                c_3() = [1]
                        [0]
                        [0]
           
           * Path {2}->{3}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}->{4}.
           
           * Path {2}->{3}->{1}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}->{4}.
           
           * Path {2}->{3}->{1}->{4}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  s(x()) -> r(x())
                , 0() -> z()
                , ack(0(), n) -> s(n)
                , ack(s(m), 0()) -> ack(m, s(0()))
                , ack(s(m), s(n)) -> ack(m, ack(s(m), n))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {},
                 Uargs(c_0) = {}, Uargs(s^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                s(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                x() = [0]
                      [0]
                      [0]
                r(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                z() = [0]
                      [0]
                      [0]
                ack^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                                [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                s^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_3() = [0]
                        [0]
                        [0]
                0^#() = [0]
                        [0]
                        [0]
                c_4() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {0^#() -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0^#() = [7]
                        [7]
                        [7]
                c_4() = [0]
                        [3]
                        [3]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: ack^#(0(), n) -> c_0(s^#(n))
              , 2: ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
              , 3: ack^#(s(m), s(n)) -> c_2(ack^#(m, ack(s(m), n)))
              , 4: s^#(x()) -> c_3()
              , 5: 0^#() -> c_4()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [     inherited      ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |   |
                |   `->{4}                                               [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [     inherited      ]
                    |
                    `->{1}                                               [     inherited      ]
                        |
                        `->{4}                                           [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}->{4}.
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules for this path are:
             
               {  s(x()) -> r(x())
                , 0() -> z()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {},
                 Uargs(c_0) = {}, Uargs(s^#) = {}, Uargs(c_1) = {1}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [3]
                      [3]
                s(x1) = [0 0] x1 + [3]
                        [3 3]      [3]
                x() = [0]
                      [0]
                r(x1) = [0 3] x1 + [1]
                        [0 1]      [3]
                z() = [0]
                      [1]
                ack^#(x1, x2) = [0 0] x1 + [3 3] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 3] x1 + [0]
                          [0 0]      [0]
                s^#(x1) = [3 3] x1 + [0]
                          [1 1]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3() = [0]
                        [0]
                0^#() = [0]
                        [0]
                c_4() = [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ack^#(0(), n) -> c_0(s^#(n))}
               Weak Rules:
                 {  ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
                  , s(x()) -> r(x())
                  , 0() -> z()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {}, Uargs(c_0) = {},
                 Uargs(s^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [2]
                s(x1) = [2 0] x1 + [4]
                        [0 3]      [0]
                x() = [0]
                      [0]
                r(x1) = [0 0] x1 + [4]
                        [0 1]      [0]
                z() = [0]
                      [0]
                ack^#(x1, x2) = [2 3] x1 + [0 2] x2 + [0]
                                [2 2]      [0 0]      [0]
                c_0(x1) = [2 2] x1 + [1]
                          [0 0]      [6]
                s^#(x1) = [0 0] x1 + [2]
                          [0 0]      [2]
                c_1(x1) = [1 0] x1 + [0]
                          [0 0]      [6]
           
           * Path {2}->{1}->{4}: YES(?,O(n^1))
             ---------------------------------
             
             The usable rules for this path are:
             
               {  s(x()) -> r(x())
                , 0() -> z()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {},
                 Uargs(c_0) = {1}, Uargs(s^#) = {}, Uargs(c_1) = {1},
                 Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [3]
                      [3]
                s(x1) = [0 0] x1 + [3]
                        [3 3]      [3]
                x() = [0]
                      [0]
                r(x1) = [0 3] x1 + [1]
                        [0 1]      [3]
                z() = [1]
                      [1]
                ack^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                s^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3() = [0]
                        [0]
                0^#() = [0]
                        [0]
                c_4() = [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {s^#(x()) -> c_3()}
               Weak Rules:
                 {  ack^#(0(), n) -> c_0(s^#(n))
                  , ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
                  , s(x()) -> r(x())
                  , 0() -> z()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {}, Uargs(c_0) = {1},
                 Uargs(s^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                      [0]
                s(x1) = [0 2] x1 + [0]
                        [1 0]      [0]
                x() = [2]
                      [2]
                r(x1) = [0 0] x1 + [0]
                        [0 1]      [0]
                z() = [0]
                      [0]
                ack^#(x1, x2) = [2 4] x1 + [4 4] x2 + [0]
                                [0 0]      [2 0]      [0]
                c_0(x1) = [2 0] x1 + [3]
                          [0 0]      [0]
                s^#(x1) = [2 2] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 3]      [3]
                c_3() = [1]
                        [0]
           
           * Path {2}->{3}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}->{4}.
           
           * Path {2}->{3}->{1}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}->{4}.
           
           * Path {2}->{3}->{1}->{4}: MAYBE
             ------------------------------
             
             The usable rules for this path are:
             
               {  s(x()) -> r(x())
                , 0() -> z()
                , ack(0(), n) -> s(n)
                , ack(s(m), 0()) -> ack(m, s(0()))
                , ack(s(m), s(n)) -> ack(m, ack(s(m), n))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  ack^#(0(), n) -> c_0(s^#(n))
                  , ack^#(s(m), s(n)) -> c_2(ack^#(m, ack(s(m), n)))
                  , ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
                  , s^#(x()) -> c_3()
                  , s(x()) -> r(x())
                  , 0() -> z()
                  , ack(0(), n) -> s(n)
                  , ack(s(m), 0()) -> ack(m, s(0()))
                  , ack(s(m), s(n)) -> ack(m, ack(s(m), n))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {},
                 Uargs(c_0) = {}, Uargs(s^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                s(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                x() = [0]
                      [0]
                r(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                z() = [0]
                      [0]
                ack^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                                [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                s^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_3() = [0]
                        [0]
                0^#() = [0]
                        [0]
                c_4() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {0^#() -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0^#() = [7]
                        [7]
                c_4() = [0]
                        [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: ack^#(0(), n) -> c_0(s^#(n))
              , 2: ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
              , 3: ack^#(s(m), s(n)) -> c_2(ack^#(m, ack(s(m), n)))
              , 4: s^#(x()) -> c_3()
              , 5: 0^#() -> c_4()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{2}                                                       [     inherited      ]
                |
                |->{1}                                                   [   YES(?,O(n^1))    ]
                |   |
                |   `->{4}                                               [   YES(?,O(n^1))    ]
                |
                `->{3}                                                   [     inherited      ]
                    |
                    `->{1}                                               [     inherited      ]
                        |
                        `->{4}                                           [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {2}: inherited
             -------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}->{4}.
           
           * Path {2}->{1}: YES(?,O(n^1))
             ----------------------------
             
             The usable rules for this path are:
             
               {  s(x()) -> r(x())
                , 0() -> z()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {},
                 Uargs(c_0) = {}, Uargs(s^#) = {}, Uargs(c_1) = {1}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [3]
                s(x1) = [3] x1 + [2]
                x() = [3]
                r(x1) = [1] x1 + [3]
                z() = [1]
                ack^#(x1, x2) = [0] x1 + [3] x2 + [0]
                c_0(x1) = [3] x1 + [0]
                s^#(x1) = [1] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3() = [0]
                0^#() = [0]
                c_4() = [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {ack^#(0(), n) -> c_0(s^#(n))}
               Weak Rules:
                 {  ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
                  , s(x()) -> r(x())
                  , 0() -> z()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {}, Uargs(c_0) = {},
                 Uargs(s^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [2] x1 + [2]
                x() = [0]
                r(x1) = [1] x1 + [2]
                z() = [0]
                ack^#(x1, x2) = [2] x1 + [0] x2 + [4]
                c_0(x1) = [2] x1 + [3]
                s^#(x1) = [0] x1 + [2]
                c_1(x1) = [1] x1 + [3]
           
           * Path {2}->{1}->{4}: YES(?,O(n^1))
             ---------------------------------
             
             The usable rules for this path are:
             
               {  s(x()) -> r(x())
                , 0() -> z()}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {},
                 Uargs(c_0) = {1}, Uargs(s^#) = {}, Uargs(c_1) = {1},
                 Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [3]
                s(x1) = [3] x1 + [2]
                x() = [3]
                r(x1) = [1] x1 + [3]
                z() = [0]
                ack^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                s^#(x1) = [0] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3() = [0]
                0^#() = [0]
                c_4() = [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(n^1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {s^#(x()) -> c_3()}
               Weak Rules:
                 {  ack^#(0(), n) -> c_0(s^#(n))
                  , ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
                  , s(x()) -> r(x())
                  , 0() -> z()}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {}, Uargs(c_0) = {1},
                 Uargs(s^#) = {}, Uargs(c_1) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0() = [2]
                s(x1) = [1] x1 + [0]
                x() = [3]
                r(x1) = [1] x1 + [0]
                z() = [0]
                ack^#(x1, x2) = [2] x1 + [4] x2 + [4]
                c_0(x1) = [2] x1 + [3]
                s^#(x1) = [2] x1 + [2]
                c_1(x1) = [1] x1 + [0]
                c_3() = [1]
           
           * Path {2}->{3}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}->{4}.
           
           * Path {2}->{3}->{1}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {2}->{3}->{1}->{4}.
           
           * Path {2}->{3}->{1}->{4}: MAYBE
             ------------------------------
             
             The usable rules for this path are:
             
               {  s(x()) -> r(x())
                , 0() -> z()
                , ack(0(), n) -> s(n)
                , ack(s(m), 0()) -> ack(m, s(0()))
                , ack(s(m), s(n)) -> ack(m, ack(s(m), n))}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  ack^#(0(), n) -> c_0(s^#(n))
                  , ack^#(s(m), s(n)) -> c_2(ack^#(m, ack(s(m), n)))
                  , ack^#(s(m), 0()) -> c_1(ack^#(m, s(0())))
                  , s^#(x()) -> c_3()
                  , s(x()) -> r(x())
                  , 0() -> z()
                  , ack(0(), n) -> s(n)
                  , ack(s(m), 0()) -> ack(m, s(0()))
                  , ack(s(m), s(n)) -> ack(m, ack(s(m), n))}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(ack) = {}, Uargs(s) = {}, Uargs(r) = {}, Uargs(ack^#) = {},
                 Uargs(c_0) = {}, Uargs(s^#) = {}, Uargs(c_1) = {}, Uargs(c_2) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                ack(x1, x2) = [0] x1 + [0] x2 + [0]
                0() = [0]
                s(x1) = [0] x1 + [0]
                x() = [0]
                r(x1) = [0] x1 + [0]
                z() = [0]
                ack^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                s^#(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2(x1) = [0] x1 + [0]
                c_3() = [0]
                0^#() = [0]
                c_4() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {0^#() -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                0^#() = [7]
                c_4() = [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool pair1rc

Execution TimeUnknown
Answer
TIMEOUT
InputTCT 09 ackantiinn2

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  ack(0(), n) -> s(n)
     , ack(s(m), 0()) -> ack(m, s(0()))
     , ack(s(m), s(n)) -> ack(m, ack(s(m), n))
     , s(x()) -> r(x())
     , 0() -> z()}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair2rc

Execution TimeUnknown
Answer
TIMEOUT
InputTCT 09 ackantiinn2

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  ack(0(), n) -> s(n)
     , ack(s(m), 0()) -> ack(m, s(0()))
     , ack(s(m), s(n)) -> ack(m, ack(s(m), n))
     , s(x()) -> r(x())
     , 0() -> z()}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair2 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool pair3irc

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputTCT 09 ackantiinn2

stdout:

YES(?,O(n^1))

We consider the following Problem:

  Strict Trs:
    {  ack(0(), n) -> s(n)
     , ack(s(m), 0()) -> ack(m, s(0()))
     , ack(s(m), s(n)) -> ack(m, ack(s(m), n))
     , s(x()) -> r(x())
     , 0() -> z()}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Following rules were removed:
     The rule 0() -> z()
     makes following rules inapplicable:
        ack(0(), n) -> s(n)ack(s(m), 0()) -> ack(m, s(0()))
     
     
  
  We consider the following Problem:
  
    Strict Trs:
      {  ack(s(m), s(n)) -> ack(m, ack(s(m), n))
       , s(x()) -> r(x())
       , 0() -> z()}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Application of 'Fastest':
  -------------------------
    'Fastest' proved the goal fastest:
    
    'Sequentially' proved the goal fastest:
    
    'Fastest' succeeded:
    
    'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' proved the goal fastest:
    
    The following argument positions are usable:
      Uargs(ack) = {2}, Uargs(s) = {}, Uargs(r) = {}
    We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
    Interpretation Functions:
     ack(x1, x2) = [0 0] x1 + [2 0] x2 + [0]
                   [0 0]      [0 0]      [0]
     0() = [2]
           [2]
     s(x1) = [2 0] x1 + [2]
             [0 0]      [0]
     x() = [1]
           [0]
     r(x1) = [0 2] x1 + [1]
             [0 1]      [0]
     z() = [1]
           [0]

Hurray, we answered YES(?,O(n^1))

Tool pair3rc

Execution TimeUnknown
Answer
TIMEOUT
InputTCT 09 ackantiinn2

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  ack(0(), n) -> s(n)
     , ack(s(m), 0()) -> ack(m, s(0()))
     , ack(s(m), s(n)) -> ack(m, ack(s(m), n))
     , s(x()) -> r(x())
     , 0() -> z()}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool rc

Execution TimeUnknown
Answer
TIMEOUT
InputTCT 09 ackantiinn2

stdout:

TIMEOUT

We consider the following Problem:

  Strict Trs:
    {  ack(0(), n) -> s(n)
     , ack(s(m), 0()) -> ack(m, s(0()))
     , ack(s(m), s(n)) -> ack(m, ack(s(m), n))
     , s(x()) -> r(x())
     , 0() -> z()}
  StartTerms: basic terms
  Strategy: none

Certificate: TIMEOUT

Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
  Computation stopped due to timeout after 60.0 seconds

Arrrr..

Tool tup3irc

Execution Time7.088649ms
Answer
YES(?,O(n^1))
InputTCT 09 ackantiinn2

stdout:

YES(?,O(n^1))

We consider the following Problem:

  Strict Trs:
    {  ack(0(), n) -> s(n)
     , ack(s(m), 0()) -> ack(m, s(0()))
     , ack(s(m), s(n)) -> ack(m, ack(s(m), n))
     , s(x()) -> r(x())
     , 0() -> z()}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
  Following rules were removed:
     The rule 0() -> z()
     makes following rules inapplicable:
        ack(0(), n) -> s(n)ack(s(m), 0()) -> ack(m, s(0()))
     
     
  
  We consider the following Problem:
  
    Strict Trs:
      {  ack(s(m), s(n)) -> ack(m, ack(s(m), n))
       , s(x()) -> r(x())
       , 0() -> z()}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Application of 'Fastest':
  -------------------------
    'Fastest' proved the goal fastest:
    
    'Sequentially' proved the goal fastest:
    
    'Fastest' succeeded:
    
    'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' proved the goal fastest:
    
    The following argument positions are usable:
      Uargs(ack) = {2}, Uargs(s) = {}, Uargs(r) = {}
    We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
    Interpretation Functions:
     ack(x1, x2) = [0 0] x1 + [2 0] x2 + [0]
                   [0 0]      [0 0]      [0]
     0() = [2]
           [2]
     s(x1) = [2 0] x1 + [2]
             [0 0]      [0]
     x() = [1]
           [0]
     r(x1) = [0 2] x1 + [1]
             [0 1]      [0]
     z() = [1]
           [0]

Hurray, we answered YES(?,O(n^1))