Problem TCT 09 ma1

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputTCT 09 ma1

stdout:

MAYBE

Problem:
 f(s(x),y) -> f(x,g(x,y))
 f(0(),y) -> y
 g(x,y) -> y

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputTCT 09 ma1

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputTCT 09 ma1

stdout:

YES(?,O(n^1))

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  f(s(x), y) -> f(x, g(x, y))
     , f(0(), y) -> y
     , g(x, y) -> y}

Proof Output:    
  'matrix-interpretation of dimension 1' proved the best result:
  
  Details:
  --------
    'matrix-interpretation of dimension 1' succeeded with the following output:
     'matrix-interpretation of dimension 1'
     --------------------------------------
     Answer:           YES(?,O(n^1))
     Input Problem:    innermost runtime-complexity with respect to
       Rules:
         {  f(s(x), y) -> f(x, g(x, y))
          , f(0(), y) -> y
          , g(x, y) -> y}
     
     Proof Output:    
       The following argument positions are usable:
         Uargs(f) = {2}, Uargs(s) = {}, Uargs(g) = {}
       We have the following constructor-restricted matrix interpretation:
       Interpretation Functions:
        f(x1, x2) = [3] x1 + [2] x2 + [4]
        s(x1) = [1] x1 + [2]
        g(x1, x2) = [0] x1 + [1] x2 + [2]
        0() = [2]

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputTCT 09 ma1

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputTCT 09 ma1

stdout:

YES(?,O(n^1))

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    runtime-complexity with respect to
  Rules:
    {  f(s(x), y) -> f(x, g(x, y))
     , f(0(), y) -> y
     , g(x, y) -> y}

Proof Output:    
  'matrix-interpretation of dimension 1' proved the best result:
  
  Details:
  --------
    'matrix-interpretation of dimension 1' succeeded with the following output:
     'matrix-interpretation of dimension 1'
     --------------------------------------
     Answer:           YES(?,O(n^1))
     Input Problem:    runtime-complexity with respect to
       Rules:
         {  f(s(x), y) -> f(x, g(x, y))
          , f(0(), y) -> y
          , g(x, y) -> y}
     
     Proof Output:    
       The following argument positions are usable:
         Uargs(f) = {2}, Uargs(s) = {}, Uargs(g) = {2}
       We have the following constructor-restricted matrix interpretation:
       Interpretation Functions:
        f(x1, x2) = [2] x1 + [2] x2 + [4]
        s(x1) = [1] x1 + [4]
        g(x1, x2) = [0] x1 + [1] x2 + [2]
        0() = [0]

Tool pair1rc

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputTCT 09 ma1

stdout:

YES(?,O(n^1))

We consider the following Problem:

  Strict Trs:
    {  f(s(x), y) -> f(x, g(x, y))
     , f(0(), y) -> y
     , g(x, y) -> y}
  StartTerms: basic terms
  Strategy: none

Certificate: YES(?,O(n^1))

Application of 'pair1 (timeout of 60.0 seconds)':
-------------------------------------------------
  The processor is not applicable, reason is:
   Input problem is not restricted to innermost rewriting
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  f(s(x), y) -> f(x, g(x, y))
     , f(0(), y) -> y
     , g(x, y) -> y}
  StartTerms: basic terms
  Strategy: none
  
  1) 'Fastest' proved the goal fastest:
     
     'Sequentially' proved the goal fastest:
     
     'Fastest' succeeded:
     
     'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' proved the goal fastest:
     
     The following argument positions are usable:
       Uargs(f) = {2}, Uargs(s) = {}, Uargs(g) = {2}
     We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
     Interpretation Functions:
      f(x1, x2) = [0 1] x1 + [1 0] x2 + [2]
                  [0 0]      [0 1]      [0]
      s(x1) = [0 0] x1 + [0]
              [0 1]      [2]
      g(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                  [0 0]      [0 1]      [0]
      0() = [0]
            [2]
  

Hurray, we answered YES(?,O(n^1))

Tool pair2rc

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputTCT 09 ma1

stdout:

YES(?,O(n^1))

We consider the following Problem:

  Strict Trs:
    {  f(s(x), y) -> f(x, g(x, y))
     , f(0(), y) -> y
     , g(x, y) -> y}
  StartTerms: basic terms
  Strategy: none

Certificate: YES(?,O(n^1))

Application of 'pair2 (timeout of 60.0 seconds)':
-------------------------------------------------
  The processor is not applicable, reason is:
   Input problem is not restricted to innermost rewriting
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  f(s(x), y) -> f(x, g(x, y))
     , f(0(), y) -> y
     , g(x, y) -> y}
  StartTerms: basic terms
  Strategy: none
  
  1) 'Fastest' proved the goal fastest:
     
     'Sequentially' proved the goal fastest:
     
     'Fastest' succeeded:
     
     'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' proved the goal fastest:
     
     The following argument positions are usable:
       Uargs(f) = {2}, Uargs(s) = {}, Uargs(g) = {2}
     We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
     Interpretation Functions:
      f(x1, x2) = [0 1] x1 + [1 0] x2 + [2]
                  [0 0]      [0 1]      [0]
      s(x1) = [0 0] x1 + [0]
              [0 1]      [2]
      g(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                  [0 0]      [0 1]      [0]
      0() = [0]
            [2]
  

Hurray, we answered YES(?,O(n^1))

Tool pair3irc

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputTCT 09 ma1

stdout:

YES(?,O(n^1))

We consider the following Problem:

  Strict Trs:
    {  f(s(x), y) -> f(x, g(x, y))
     , f(0(), y) -> y
     , g(x, y) -> y}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  The input problem contains no overlaps that give rise to inapplicable rules.
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  f(s(x), y) -> f(x, g(x, y))
     , f(0(), y) -> y
     , g(x, y) -> y}
  StartTerms: basic terms
  Strategy: innermost
  
  1) 'Fastest' proved the goal fastest:
     
     'Sequentially' proved the goal fastest:
     
     'Fastest' succeeded:
     
     'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' proved the goal fastest:
     
     The following argument positions are usable:
       Uargs(f) = {2}, Uargs(s) = {}, Uargs(g) = {}
     We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
     Interpretation Functions:
      f(x1, x2) = [0 2] x1 + [1 0] x2 + [0]
                  [0 0]      [0 2]      [0]
      s(x1) = [0 0] x1 + [0]
              [0 1]      [2]
      g(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                  [0 0]      [0 1]      [0]
      0() = [0]
            [1]
  

Hurray, we answered YES(?,O(n^1))

Tool pair3rc

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputTCT 09 ma1

stdout:

YES(?,O(n^1))

We consider the following Problem:

  Strict Trs:
    {  f(s(x), y) -> f(x, g(x, y))
     , f(0(), y) -> y
     , g(x, y) -> y}
  StartTerms: basic terms
  Strategy: none

Certificate: YES(?,O(n^1))

Application of 'pair3 (timeout of 60.0 seconds)':
-------------------------------------------------
  The processor is not applicable, reason is:
   Input problem is not restricted to innermost rewriting
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  f(s(x), y) -> f(x, g(x, y))
     , f(0(), y) -> y
     , g(x, y) -> y}
  StartTerms: basic terms
  Strategy: none
  
  1) 'Fastest' proved the goal fastest:
     
     'Sequentially' proved the goal fastest:
     
     'Fastest' succeeded:
     
     'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' proved the goal fastest:
     
     The following argument positions are usable:
       Uargs(f) = {2}, Uargs(s) = {}, Uargs(g) = {2}
     We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
     Interpretation Functions:
      f(x1, x2) = [0 1] x1 + [1 0] x2 + [2]
                  [0 0]      [0 1]      [0]
      s(x1) = [0 0] x1 + [0]
              [0 1]      [2]
      g(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                  [0 0]      [0 1]      [0]
      0() = [0]
            [2]
  

Hurray, we answered YES(?,O(n^1))

Tool rc

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputTCT 09 ma1

stdout:

YES(?,O(n^1))

We consider the following Problem:

  Strict Trs:
    {  f(s(x), y) -> f(x, g(x, y))
     , f(0(), y) -> y
     , g(x, y) -> y}
  StartTerms: basic terms
  Strategy: none

Certificate: YES(?,O(n^1))

Application of 'rc (timeout of 60.0 seconds)':
----------------------------------------------
  'Fastest' proved the goal fastest:
  
  'Sequentially' proved the goal fastest:
  
  'Fastest' succeeded:
  
  'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' proved the goal fastest:
  
  The following argument positions are usable:
    Uargs(f) = {2}, Uargs(s) = {}, Uargs(g) = {2}
  We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
  Interpretation Functions:
   f(x1, x2) = [0 1] x1 + [1 0] x2 + [2]
               [0 0]      [0 1]      [0]
   s(x1) = [0 0] x1 + [0]
           [0 1]      [2]
   g(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
               [0 0]      [0 1]      [0]
   0() = [0]
         [2]

Hurray, we answered YES(?,O(n^1))

Tool tup3irc

Execution Time42.964058ms
Answer
YES(?,O(n^1))
InputTCT 09 ma1

stdout:

YES(?,O(n^1))

We consider the following Problem:

  Strict Trs:
    {  f(s(x), y) -> f(x, g(x, y))
     , f(0(), y) -> y
     , g(x, y) -> y}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Application of 'tup3 (timeout of 60.0 seconds)':
------------------------------------------------
  The input problem contains no overlaps that give rise to inapplicable rules.
  
  We abort the transformation and continue with the subprocessor on the problem
  
  Strict Trs:
    {  f(s(x), y) -> f(x, g(x, y))
     , f(0(), y) -> y
     , g(x, y) -> y}
  StartTerms: basic terms
  Strategy: innermost
  
  1) 'Fastest' proved the goal fastest:
     
     'Sequentially' proved the goal fastest:
     
     'Fastest' succeeded:
     
     'matrix-interpretation of dimension 2 (timeout of 100.0 seconds)' proved the goal fastest:
     
     The following argument positions are usable:
       Uargs(f) = {2}, Uargs(s) = {}, Uargs(g) = {}
     We have the following constructor-restricted (at most 1 in the main diagonals) matrix interpretation:
     Interpretation Functions:
      f(x1, x2) = [0 2] x1 + [1 0] x2 + [0]
                  [0 0]      [0 2]      [0]
      s(x1) = [0 0] x1 + [0]
              [0 1]      [2]
      g(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                  [0 0]      [0 1]      [0]
      0() = [0]
            [1]
  

Hurray, we answered YES(?,O(n^1))