Tool CaT
stdout:
YES(?,O(n^1))
Problem:
b(c(a(x1))) -> a(b(a(b(x1))))
b(x1) -> c(c(x1))
a(a(x1)) -> a(c(b(a(x1))))
Proof:
Bounds Processor:
bound: 1
enrichment: match
automaton:
final states: {3,2}
transitions:
c1(5) -> 6*
c1(4) -> 5*
b0(1) -> 2*
c0(1) -> 1*
a0(1) -> 3*
1 -> 4*
6 -> 2*
problem:
QedTool IRC1
stdout:
YES(?,O(n^1))
Tool IRC2
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ b(c(a(x1))) -> a(b(a(b(x1))))
, b(x1) -> c(c(x1))
, a(a(x1)) -> a(c(b(a(x1))))}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ b(c(a(x1))) -> a(b(a(b(x1))))
, b(x1) -> c(c(x1))
, a(a(x1)) -> a(c(b(a(x1))))}
Proof Output:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ b_0(2) -> 1
, c_0(2) -> 2
, c_1(2) -> 3
, c_1(3) -> 1
, a_0(2) -> 1}Tool RC1
stdout:
YES(?,O(n^1))
Tool RC2
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ b(c(a(x1))) -> a(b(a(b(x1))))
, b(x1) -> c(c(x1))
, a(a(x1)) -> a(c(b(a(x1))))}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ b(c(a(x1))) -> a(b(a(b(x1))))
, b(x1) -> c(c(x1))
, a(a(x1)) -> a(c(b(a(x1))))}
Proof Output:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ b_0(2) -> 1
, c_0(2) -> 2
, c_1(2) -> 3
, c_1(3) -> 1
, a_0(2) -> 1}