Tool CaT
stdout:
YES(?,O(n^1))
Problem:
g(c(x1)) -> g(f(c(x1)))
g(f(c(x1))) -> g(f(f(c(x1))))
g(g(x1)) -> g(f(g(x1)))
f(f(g(x1))) -> g(f(x1))
Proof:
Bounds Processor:
bound: 2
enrichment: match
automaton:
final states: {3,2}
transitions:
g1(6) -> 7*
f1(5) -> 6*
c1(4) -> 5*
g2(20) -> 21*
g0(1) -> 2*
f2(19) -> 20*
f2(18) -> 19*
c0(1) -> 1*
c2(17) -> 18*
f0(1) -> 3*
1 -> 4*
4 -> 17*
7 -> 2*
21 -> 7,2
problem:
QedTool IRC1
stdout:
YES(?,O(n^1))
Tool IRC2
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ g(c(x1)) -> g(f(c(x1)))
, g(f(c(x1))) -> g(f(f(c(x1))))
, g(g(x1)) -> g(f(g(x1)))
, f(f(g(x1))) -> g(f(x1))}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ g(c(x1)) -> g(f(c(x1)))
, g(f(c(x1))) -> g(f(f(c(x1))))
, g(g(x1)) -> g(f(g(x1)))
, f(f(g(x1))) -> g(f(x1))}
Proof Output:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ g_0(2) -> 1
, g_1(3) -> 1
, g_2(5) -> 1
, c_0(2) -> 2
, c_1(2) -> 4
, c_2(2) -> 7
, f_0(2) -> 1
, f_1(4) -> 3
, f_2(6) -> 5
, f_2(7) -> 6}Tool RC1
stdout:
YES(?,O(n^1))
Tool RC2
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ g(c(x1)) -> g(f(c(x1)))
, g(f(c(x1))) -> g(f(f(c(x1))))
, g(g(x1)) -> g(f(g(x1)))
, f(f(g(x1))) -> g(f(x1))}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ g(c(x1)) -> g(f(c(x1)))
, g(f(c(x1))) -> g(f(f(c(x1))))
, g(g(x1)) -> g(f(g(x1)))
, f(f(g(x1))) -> g(f(x1))}
Proof Output:
The problem is match-bounded by 2.
The enriched problem is compatible with the following automaton:
{ g_0(2) -> 1
, g_1(3) -> 1
, g_2(5) -> 1
, c_0(2) -> 2
, c_1(2) -> 4
, c_2(2) -> 7
, f_0(2) -> 1
, f_1(4) -> 3
, f_2(6) -> 5
, f_2(7) -> 6}