Tool CaT
stdout:
YES(?,O(n^1))
Problem:
r0(0(x1)) -> 0(r0(x1))
r0(1(x1)) -> 1(r0(x1))
r0(m(x1)) -> m(r0(x1))
r1(0(x1)) -> 0(r1(x1))
r1(1(x1)) -> 1(r1(x1))
r1(m(x1)) -> m(r1(x1))
r0(b(x1)) -> qr(0(b(x1)))
r1(b(x1)) -> qr(1(b(x1)))
0(qr(x1)) -> qr(0(x1))
1(qr(x1)) -> qr(1(x1))
m(qr(x1)) -> ql(m(x1))
0(ql(x1)) -> ql(0(x1))
1(ql(x1)) -> ql(1(x1))
b(ql(0(x1))) -> 0(b(r0(x1)))
b(ql(1(x1))) -> 1(b(r1(x1)))
Proof:
Bounds Processor:
bound: 1
enrichment: match
automaton:
final states: {8,7,6,5,4,3}
transitions:
ql1(41) -> 42*
ql1(43) -> 44*
ql1(33) -> 34*
11(25) -> 26*
11(22) -> 23*
01(15) -> 16*
01(12) -> 13*
m1(35) -> 36*
m1(32) -> 33*
qr1(23) -> 24*
qr1(13) -> 14*
r00(2) -> 3*
r00(1) -> 3*
00(2) -> 5*
00(1) -> 5*
10(2) -> 6*
10(1) -> 6*
m0(2) -> 7*
m0(1) -> 7*
r10(2) -> 4*
r10(1) -> 4*
b0(2) -> 8*
b0(1) -> 8*
qr0(2) -> 1*
qr0(1) -> 1*
ql0(2) -> 2*
ql0(1) -> 2*
1 -> 35,25,15
2 -> 32,22,12
13 -> 41*
14 -> 16,13,41,5
16 -> 13*
23 -> 43*
24 -> 26,23,43,6
26 -> 23*
34 -> 36,33,7
36 -> 33*
42 -> 13,41,5
44 -> 23,43,6
problem:
QedTool IRC1
stdout:
YES(?,O(n^1))
Tool IRC2
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ r0(0(x1)) -> 0(r0(x1))
, r0(1(x1)) -> 1(r0(x1))
, r0(m(x1)) -> m(r0(x1))
, r1(0(x1)) -> 0(r1(x1))
, r1(1(x1)) -> 1(r1(x1))
, r1(m(x1)) -> m(r1(x1))
, r0(b(x1)) -> qr(0(b(x1)))
, r1(b(x1)) -> qr(1(b(x1)))
, 0(qr(x1)) -> qr(0(x1))
, 1(qr(x1)) -> qr(1(x1))
, m(qr(x1)) -> ql(m(x1))
, 0(ql(x1)) -> ql(0(x1))
, 1(ql(x1)) -> ql(1(x1))
, b(ql(0(x1))) -> 0(b(r0(x1)))
, b(ql(1(x1))) -> 1(b(r1(x1)))}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ r0(0(x1)) -> 0(r0(x1))
, r0(1(x1)) -> 1(r0(x1))
, r0(m(x1)) -> m(r0(x1))
, r1(0(x1)) -> 0(r1(x1))
, r1(1(x1)) -> 1(r1(x1))
, r1(m(x1)) -> m(r1(x1))
, r0(b(x1)) -> qr(0(b(x1)))
, r1(b(x1)) -> qr(1(b(x1)))
, 0(qr(x1)) -> qr(0(x1))
, 1(qr(x1)) -> qr(1(x1))
, m(qr(x1)) -> ql(m(x1))
, 0(ql(x1)) -> ql(0(x1))
, 1(ql(x1)) -> ql(1(x1))
, b(ql(0(x1))) -> 0(b(r0(x1)))
, b(ql(1(x1))) -> 1(b(r1(x1)))}
Proof Output:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ r0_0(2) -> 1
, 0_0(2) -> 1
, 0_1(2) -> 3
, 1_0(2) -> 1
, 1_1(2) -> 3
, m_0(2) -> 1
, m_1(2) -> 4
, r1_0(2) -> 1
, b_0(2) -> 1
, qr_0(2) -> 2
, qr_1(3) -> 1
, qr_1(3) -> 3
, ql_0(2) -> 2
, ql_1(3) -> 1
, ql_1(3) -> 3
, ql_1(4) -> 1
, ql_1(4) -> 4}Tool RC1
stdout:
YES(?,O(n^1))
Tool RC2
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ r0(0(x1)) -> 0(r0(x1))
, r0(1(x1)) -> 1(r0(x1))
, r0(m(x1)) -> m(r0(x1))
, r1(0(x1)) -> 0(r1(x1))
, r1(1(x1)) -> 1(r1(x1))
, r1(m(x1)) -> m(r1(x1))
, r0(b(x1)) -> qr(0(b(x1)))
, r1(b(x1)) -> qr(1(b(x1)))
, 0(qr(x1)) -> qr(0(x1))
, 1(qr(x1)) -> qr(1(x1))
, m(qr(x1)) -> ql(m(x1))
, 0(ql(x1)) -> ql(0(x1))
, 1(ql(x1)) -> ql(1(x1))
, b(ql(0(x1))) -> 0(b(r0(x1)))
, b(ql(1(x1))) -> 1(b(r1(x1)))}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ r0(0(x1)) -> 0(r0(x1))
, r0(1(x1)) -> 1(r0(x1))
, r0(m(x1)) -> m(r0(x1))
, r1(0(x1)) -> 0(r1(x1))
, r1(1(x1)) -> 1(r1(x1))
, r1(m(x1)) -> m(r1(x1))
, r0(b(x1)) -> qr(0(b(x1)))
, r1(b(x1)) -> qr(1(b(x1)))
, 0(qr(x1)) -> qr(0(x1))
, 1(qr(x1)) -> qr(1(x1))
, m(qr(x1)) -> ql(m(x1))
, 0(ql(x1)) -> ql(0(x1))
, 1(ql(x1)) -> ql(1(x1))
, b(ql(0(x1))) -> 0(b(r0(x1)))
, b(ql(1(x1))) -> 1(b(r1(x1)))}
Proof Output:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ r0_0(2) -> 1
, 0_0(2) -> 1
, 0_1(2) -> 3
, 1_0(2) -> 1
, 1_1(2) -> 3
, m_0(2) -> 1
, m_1(2) -> 4
, r1_0(2) -> 1
, b_0(2) -> 1
, qr_0(2) -> 2
, qr_1(3) -> 1
, qr_1(3) -> 3
, ql_0(2) -> 2
, ql_1(3) -> 1
, ql_1(3) -> 3
, ql_1(4) -> 1
, ql_1(4) -> 4}