Problem Zantema 04 z117

Tool CaT

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputZantema 04 z117

stdout:

YES(?,O(n^1))

Problem:
 d(a(x1)) -> b(d(x1))
 b(x1) -> a(a(a(x1)))
 c(d(c(x1))) -> a(d(x1))
 b(d(d(x1))) -> c(c(d(d(c(x1)))))

Proof:
 Bounds Processor:
  bound: 2
  enrichment: match
  automaton:
   final states: {4,3,2}
   transitions:
    a1(15) -> 16*
    a1(17) -> 18*
    a1(16) -> 17*
    b1(6) -> 7*
    d1(5) -> 6*
    a2(25) -> 26*
    a2(24) -> 25*
    a2(23) -> 24*
    d0(1) -> 2*
    a0(1) -> 1*
    b0(1) -> 3*
    c0(1) -> 4*
    1 -> 15,5
    6 -> 23*
    7 -> 6,2
    18 -> 3*
    26 -> 7,2
  problem:
   
  Qed

Tool IRC1

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputZantema 04 z117

stdout:

YES(?,O(n^1))

Tool IRC2

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputZantema 04 z117

stdout:

YES(?,O(n^1))

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  d(a(x1)) -> b(d(x1))
     , b(x1) -> a(a(a(x1)))
     , c(d(c(x1))) -> a(d(x1))
     , b(d(d(x1))) -> c(c(d(d(c(x1)))))}

Proof Output:    
  'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
  
  Details:
  --------
    'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
     'Bounds with minimal-enrichment and initial automaton 'match''
     --------------------------------------------------------------
     Answer:           YES(?,O(n^1))
     Input Problem:    innermost runtime-complexity with respect to
       Rules:
         {  d(a(x1)) -> b(d(x1))
          , b(x1) -> a(a(a(x1)))
          , c(d(c(x1))) -> a(d(x1))
          , b(d(d(x1))) -> c(c(d(d(c(x1)))))}
     
     Proof Output:    
       The problem is match-bounded by 2.
       The enriched problem is compatible with the following automaton:
       {  d_0(2) -> 1
        , d_1(2) -> 3
        , a_0(2) -> 2
        , a_1(2) -> 5
        , a_1(4) -> 1
        , a_1(5) -> 4
        , a_2(3) -> 7
        , a_2(6) -> 1
        , a_2(6) -> 3
        , a_2(7) -> 6
        , b_0(2) -> 1
        , b_1(3) -> 1
        , b_1(3) -> 3
        , c_0(2) -> 1}

Tool RC1

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputZantema 04 z117

stdout:

YES(?,O(n^1))

Tool RC2

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputZantema 04 z117

stdout:

YES(?,O(n^1))

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    runtime-complexity with respect to
  Rules:
    {  d(a(x1)) -> b(d(x1))
     , b(x1) -> a(a(a(x1)))
     , c(d(c(x1))) -> a(d(x1))
     , b(d(d(x1))) -> c(c(d(d(c(x1)))))}

Proof Output:    
  'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
  
  Details:
  --------
    'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
     'Bounds with minimal-enrichment and initial automaton 'match''
     --------------------------------------------------------------
     Answer:           YES(?,O(n^1))
     Input Problem:    runtime-complexity with respect to
       Rules:
         {  d(a(x1)) -> b(d(x1))
          , b(x1) -> a(a(a(x1)))
          , c(d(c(x1))) -> a(d(x1))
          , b(d(d(x1))) -> c(c(d(d(c(x1)))))}
     
     Proof Output:    
       The problem is match-bounded by 2.
       The enriched problem is compatible with the following automaton:
       {  d_0(2) -> 1
        , d_1(2) -> 3
        , a_0(2) -> 2
        , a_1(2) -> 5
        , a_1(4) -> 1
        , a_1(5) -> 4
        , a_2(3) -> 7
        , a_2(6) -> 1
        , a_2(6) -> 3
        , a_2(7) -> 6
        , b_0(2) -> 1
        , b_1(3) -> 1
        , b_1(3) -> 3
        , c_0(2) -> 1}