Problem Zantema 05 z27

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputZantema 05 z27

stdout:

MAYBE

Problem:
 f(0(),1(),x) -> f(g(x),g(x),x)
 f(g(x),y,z) -> g(f(x,y,z))
 f(x,g(y),z) -> g(f(x,y,z))
 f(x,y,g(z)) -> g(f(x,y,z))

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputZantema 05 z27

stdout:

MAYBE

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputZantema 05 z27

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  f(0(), 1(), x) -> f(g(x), g(x), x)
     , f(g(x), y, z) -> g(f(x, y, z))
     , f(x, g(y), z) -> g(f(x, y, z))
     , f(x, y, g(z)) -> g(f(x, y, z))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(0(), 1(), x) -> c_0(f^#(g(x), g(x), x))
              , 2: f^#(g(x), y, z) -> c_1(f^#(x, y, z))
              , 3: f^#(x, g(y), z) -> c_2(f^#(x, y, z))
              , 4: f^#(x, y, g(z)) -> c_3(f^#(x, y, z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{1,4,3,2}                                                 [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,4,3,2}: MAYBE
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                1() = [0]
                      [0]
                      [0]
                g(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [3 3 3]      [3 3 3]      [3 3 3]      [0]
                                  [3 3 3]      [3 3 3]      [3 3 3]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(0(), 1(), x) -> c_0(f^#(g(x), g(x), x))
                  , f^#(x, y, g(z)) -> c_3(f^#(x, y, z))
                  , f^#(x, g(y), z) -> c_2(f^#(x, y, z))
                  , f^#(g(x), y, z) -> c_1(f^#(x, y, z))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(0(), 1(), x) -> c_0(f^#(g(x), g(x), x))
              , 2: f^#(g(x), y, z) -> c_1(f^#(x, y, z))
              , 3: f^#(x, g(y), z) -> c_2(f^#(x, y, z))
              , 4: f^#(x, y, g(z)) -> c_3(f^#(x, y, z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{1,4,3,2}                                                 [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,4,3,2}: MAYBE
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                1() = [0]
                      [0]
                g(x1) = [1 0] x1 + [0]
                        [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [3 3]      [3 3]      [3 3]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(0(), 1(), x) -> c_0(f^#(g(x), g(x), x))
                  , f^#(x, y, g(z)) -> c_3(f^#(x, y, z))
                  , f^#(x, g(y), z) -> c_2(f^#(x, y, z))
                  , f^#(g(x), y, z) -> c_1(f^#(x, y, z))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(0(), 1(), x) -> c_0(f^#(g(x), g(x), x))
              , 2: f^#(g(x), y, z) -> c_1(f^#(x, y, z))
              , 3: f^#(x, g(y), z) -> c_2(f^#(x, y, z))
              , 4: f^#(x, y, g(z)) -> c_3(f^#(x, y, z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{1,4,3,2}                                                 [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,4,3,2}: MAYBE
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                1() = [0]
                g(x1) = [1] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [3] x3 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                c_3(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(0(), 1(), x) -> c_0(f^#(g(x), g(x), x))
                  , f^#(x, y, g(z)) -> c_3(f^#(x, y, z))
                  , f^#(x, g(y), z) -> c_2(f^#(x, y, z))
                  , f^#(g(x), y, z) -> c_1(f^#(x, y, z))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputZantema 05 z27

stdout:

MAYBE

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputZantema 05 z27

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  f(0(), 1(), x) -> f(g(x), g(x), x)
     , f(g(x), y, z) -> g(f(x, y, z))
     , f(x, g(y), z) -> g(f(x, y, z))
     , f(x, y, g(z)) -> g(f(x, y, z))}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(0(), 1(), x) -> c_0(f^#(g(x), g(x), x))
              , 2: f^#(g(x), y, z) -> c_1(f^#(x, y, z))
              , 3: f^#(x, g(y), z) -> c_2(f^#(x, y, z))
              , 4: f^#(x, y, g(z)) -> c_3(f^#(x, y, z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{1,4,3,2}                                                 [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,4,3,2}: MAYBE
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                                [0 0 0]      [0 0 0]      [0 0 0]      [0]
                0() = [0]
                      [0]
                      [0]
                1() = [0]
                      [0]
                      [0]
                g(x1) = [1 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                f^#(x1, x2, x3) = [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0]
                                  [3 3 3]      [3 3 3]      [3 3 3]      [0]
                                  [3 3 3]      [3 3 3]      [3 3 3]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_3(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(0(), 1(), x) -> c_0(f^#(g(x), g(x), x))
                  , f^#(x, y, g(z)) -> c_3(f^#(x, y, z))
                  , f^#(x, g(y), z) -> c_2(f^#(x, y, z))
                  , f^#(g(x), y, z) -> c_1(f^#(x, y, z))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(0(), 1(), x) -> c_0(f^#(g(x), g(x), x))
              , 2: f^#(g(x), y, z) -> c_1(f^#(x, y, z))
              , 3: f^#(x, g(y), z) -> c_2(f^#(x, y, z))
              , 4: f^#(x, y, g(z)) -> c_3(f^#(x, y, z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{1,4,3,2}                                                 [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,4,3,2}: MAYBE
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [0 0]      [0]
                0() = [0]
                      [0]
                1() = [0]
                      [0]
                g(x1) = [1 0] x1 + [0]
                        [0 0]      [0]
                f^#(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [0]
                                  [3 3]      [3 3]      [3 3]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_3(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(0(), 1(), x) -> c_0(f^#(g(x), g(x), x))
                  , f^#(x, y, g(z)) -> c_3(f^#(x, y, z))
                  , f^#(x, g(y), z) -> c_2(f^#(x, y, z))
                  , f^#(g(x), y, z) -> c_1(f^#(x, y, z))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(0(), 1(), x) -> c_0(f^#(g(x), g(x), x))
              , 2: f^#(g(x), y, z) -> c_1(f^#(x, y, z))
              , 3: f^#(x, g(y), z) -> c_2(f^#(x, y, z))
              , 4: f^#(x, y, g(z)) -> c_3(f^#(x, y, z))}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{1,4,3,2}                                                 [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,4,3,2}: MAYBE
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(f^#) = {}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {1}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2, x3) = [0] x1 + [0] x2 + [0] x3 + [0]
                0() = [0]
                1() = [0]
                g(x1) = [1] x1 + [0]
                f^#(x1, x2, x3) = [0] x1 + [0] x2 + [3] x3 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2(x1) = [1] x1 + [0]
                c_3(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(0(), 1(), x) -> c_0(f^#(g(x), g(x), x))
                  , f^#(x, y, g(z)) -> c_3(f^#(x, y, z))
                  , f^#(x, g(y), z) -> c_2(f^#(x, y, z))
                  , f^#(g(x), y, z) -> c_1(f^#(x, y, z))}
               Weak Rules: {}
             
             Proof Output:    
               The input cannot be shown compatible
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.