Problem Zantema 08 cariboo add3

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputZantema 08 cariboo add3

stdout:

MAYBE

Problem:
 f(g(x),h(x)) -> f(i(x),h(x))
 f(x,h(y)) -> f(x,j(y))
 f(i(x),h(x)) -> a()
 f(x,j(y)) -> a()
 i(x) -> g(x)
 j(x) -> h(x)

Proof:
 Complexity Transformation Processor:
  strict:
   f(g(x),h(x)) -> f(i(x),h(x))
   f(x,h(y)) -> f(x,j(y))
   f(i(x),h(x)) -> a()
   f(x,j(y)) -> a()
   i(x) -> g(x)
   j(x) -> h(x)
  weak:
   
  Matrix Interpretation Processor:
   dimension: 3
   max_matrix:
    [1 2 1]
    [0 0 2]
    [0 0 0]
    interpretation:
           [0]
     [a] = [0]
           [0],
     
               [1 1 0]  
     [j](x0) = [0 0 0]x0
               [0 0 0]  ,
     
               [1 2 0]     [0]
     [i](x0) = [0 0 2]x0 + [0]
               [0 0 0]     [2],
     
                   [1 0 1]     [1 0 0]     [0]
     [f](x0, x1) = [0 0 0]x0 + [0 0 0]x1 + [3]
                   [0 0 0]     [0 0 0]     [0],
     
               [1 1 0]  
     [h](x0) = [0 0 0]x0
               [0 0 0]  ,
     
               [1 2 0]     [0]
     [g](x0) = [0 0 0]x0 + [0]
               [0 0 0]     [2]
    orientation:
                    [2 3 0]    [2]    [2 3 0]    [2]               
     f(g(x),h(x)) = [0 0 0]x + [3] >= [0 0 0]x + [3] = f(i(x),h(x))
                    [0 0 0]    [0]    [0 0 0]    [0]               
     
                 [1 0 1]    [1 1 0]    [0]    [1 0 1]    [1 1 0]    [0]            
     f(x,h(y)) = [0 0 0]x + [0 0 0]y + [3] >= [0 0 0]x + [0 0 0]y + [3] = f(x,j(y))
                 [0 0 0]    [0 0 0]    [0]    [0 0 0]    [0 0 0]    [0]            
     
                    [2 3 0]    [2]    [0]      
     f(i(x),h(x)) = [0 0 0]x + [3] >= [0] = a()
                    [0 0 0]    [0]    [0]      
     
                 [1 0 1]    [1 1 0]    [0]    [0]      
     f(x,j(y)) = [0 0 0]x + [0 0 0]y + [3] >= [0] = a()
                 [0 0 0]    [0 0 0]    [0]    [0]      
     
            [1 2 0]    [0]    [1 2 0]    [0]       
     i(x) = [0 0 2]x + [0] >= [0 0 0]x + [0] = g(x)
            [0 0 0]    [2]    [0 0 0]    [2]       
     
            [1 1 0]     [1 1 0]        
     j(x) = [0 0 0]x >= [0 0 0]x = h(x)
            [0 0 0]     [0 0 0]        
    problem:
     strict:
      f(g(x),h(x)) -> f(i(x),h(x))
      f(x,h(y)) -> f(x,j(y))
      f(x,j(y)) -> a()
      i(x) -> g(x)
      j(x) -> h(x)
     weak:
      f(i(x),h(x)) -> a()
    Matrix Interpretation Processor:
     dimension: 4
     max_matrix:
      [1 0 2 1]
      [0 0 3 2]
      [0 0 0 1]
      [0 0 0 0]
      interpretation:
             [0]
             [3]
       [a] = [0]
             [0],
       
                 [1 0 0 1]     [0]
                 [0 0 2 1]     [0]
       [j](x0) = [0 0 0 1]x0 + [1]
                 [0 0 0 0]     [1],
       
                 [1 0 2 0]     [0]
                 [0 0 2 2]     [1]
       [i](x0) = [0 0 0 0]x0 + [0]
                 [0 0 0 0]     [0],
       
                     [1 0 0 0]     [1 0 2 1]  
                     [0 0 0 0]     [0 0 3 0]  
       [f](x0, x1) = [0 0 0 0]x0 + [0 0 0 0]x1
                     [0 0 0 0]     [0 0 0 0]  ,
       
                 [1 0 0 1]     [0]
                 [0 0 0 0]     [0]
       [h](x0) = [0 0 0 1]x0 + [1]
                 [0 0 0 0]     [1],
       
                 [1 0 2 0]  
                 [0 0 0 0]  
       [g](x0) = [0 0 0 0]x0
                 [0 0 0 0]  
      orientation:
                      [2 0 2 3]    [3]    [2 0 2 3]    [3]               
                      [0 0 0 3]    [3]    [0 0 0 3]    [3]               
       f(g(x),h(x)) = [0 0 0 0]x + [0] >= [0 0 0 0]x + [0] = f(i(x),h(x))
                      [0 0 0 0]    [0]    [0 0 0 0]    [0]               
       
                   [1 0 0 0]    [1 0 0 3]    [3]    [1 0 0 0]    [1 0 0 3]    [3]            
                   [0 0 0 0]    [0 0 0 3]    [3]    [0 0 0 0]    [0 0 0 3]    [3]            
       f(x,h(y)) = [0 0 0 0]x + [0 0 0 0]y + [0] >= [0 0 0 0]x + [0 0 0 0]y + [0] = f(x,j(y))
                   [0 0 0 0]    [0 0 0 0]    [0]    [0 0 0 0]    [0 0 0 0]    [0]            
       
                   [1 0 0 0]    [1 0 0 3]    [3]    [0]      
                   [0 0 0 0]    [0 0 0 3]    [3]    [3]      
       f(x,j(y)) = [0 0 0 0]x + [0 0 0 0]y + [0] >= [0] = a()
                   [0 0 0 0]    [0 0 0 0]    [0]    [0]      
       
              [1 0 2 0]    [0]    [1 0 2 0]        
              [0 0 2 2]    [1]    [0 0 0 0]        
       i(x) = [0 0 0 0]x + [0] >= [0 0 0 0]x = g(x)
              [0 0 0 0]    [0]    [0 0 0 0]        
       
              [1 0 0 1]    [0]    [1 0 0 1]    [0]       
              [0 0 2 1]    [0]    [0 0 0 0]    [0]       
       j(x) = [0 0 0 1]x + [1] >= [0 0 0 1]x + [1] = h(x)
              [0 0 0 0]    [1]    [0 0 0 0]    [1]       
       
                      [2 0 2 3]    [3]    [0]      
                      [0 0 0 3]    [3]    [3]      
       f(i(x),h(x)) = [0 0 0 0]x + [0] >= [0] = a()
                      [0 0 0 0]    [0]    [0]      
      problem:
       strict:
        f(g(x),h(x)) -> f(i(x),h(x))
        f(x,h(y)) -> f(x,j(y))
        i(x) -> g(x)
        j(x) -> h(x)
       weak:
        f(x,j(y)) -> a()
        f(i(x),h(x)) -> a()
      Matrix Interpretation Processor:
       dimension: 1
       max_matrix:
        1
        interpretation:
         [a] = 80,
         
         [j](x0) = x0,
         
         [i](x0) = x0,
         
         [f](x0, x1) = x0 + x1 + 80,
         
         [h](x0) = x0,
         
         [g](x0) = x0 + 16
        orientation:
         f(g(x),h(x)) = 2x + 96 >= 2x + 80 = f(i(x),h(x))
         
         f(x,h(y)) = x + y + 80 >= x + y + 80 = f(x,j(y))
         
         i(x) = x >= x + 16 = g(x)
         
         j(x) = x >= x = h(x)
         
         f(x,j(y)) = x + y + 80 >= 80 = a()
         
         f(i(x),h(x)) = 2x + 80 >= 80 = a()
        problem:
         strict:
          f(x,h(y)) -> f(x,j(y))
          i(x) -> g(x)
          j(x) -> h(x)
         weak:
          f(g(x),h(x)) -> f(i(x),h(x))
          f(x,j(y)) -> a()
          f(i(x),h(x)) -> a()
        Matrix Interpretation Processor:
         dimension: 1
         max_matrix:
          1
          interpretation:
           [a] = 131,
           
           [j](x0) = x0 + 128,
           
           [i](x0) = x0 + 79,
           
           [f](x0, x1) = x0 + x1 + 3,
           
           [h](x0) = x0 + 49,
           
           [g](x0) = x0 + 79
          orientation:
           f(x,h(y)) = x + y + 52 >= x + y + 131 = f(x,j(y))
           
           i(x) = x + 79 >= x + 79 = g(x)
           
           j(x) = x + 128 >= x + 49 = h(x)
           
           f(g(x),h(x)) = 2x + 131 >= 2x + 131 = f(i(x),h(x))
           
           f(x,j(y)) = x + y + 131 >= 131 = a()
           
           f(i(x),h(x)) = 2x + 131 >= 131 = a()
          problem:
           strict:
            f(x,h(y)) -> f(x,j(y))
            i(x) -> g(x)
           weak:
            j(x) -> h(x)
            f(g(x),h(x)) -> f(i(x),h(x))
            f(x,j(y)) -> a()
            f(i(x),h(x)) -> a()
          Open
   

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputZantema 08 cariboo add3

stdout:

MAYBE
 Warning when parsing problem:
                             
                               Unsupported strategy 'OUTERMOST'

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputZantema 08 cariboo add3

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  f(g(x), h(x)) -> f(i(x), h(x))
     , f(x, h(y)) -> f(x, j(y))
     , f(i(x), h(x)) -> a()
     , f(x, j(y)) -> a()
     , i(x) -> g(x)
     , j(x) -> h(x)}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(g(x), h(x)) -> c_0(f^#(i(x), h(x)))
              , 2: f^#(x, h(y)) -> c_1(f^#(x, j(y)))
              , 3: f^#(i(x), h(x)) -> c_2()
              , 4: f^#(x, j(y)) -> c_3()
              , 5: i^#(x) -> c_4()
              , 6: j^#(x) -> c_5()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{1,2}                                                     [       MAYBE        ]
                |
                |->{3}                                                   [         NA         ]
                |
                `->{4}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,2}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  i(x) -> g(x)
                , j(x) -> h(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {1, 2}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(i^#) = {}, Uargs(j^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                g(x1) = [1 0 0] x1 + [1]
                        [0 0 0]      [1]
                        [0 0 0]      [3]
                h(x1) = [0 1 0] x1 + [1]
                        [0 0 0]      [1]
                        [0 0 0]      [1]
                i(x1) = [1 0 0] x1 + [3]
                        [3 0 0]      [3]
                        [3 0 0]      [3]
                j(x1) = [0 1 0] x1 + [3]
                        [3 0 0]      [3]
                        [3 0 0]      [3]
                a() = [0]
                      [0]
                      [0]
                f^#(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [3 3 3]      [3 3 3]      [0]
                              [3 3 3]      [3 3 3]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                i^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                j^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(g(x), h(x)) -> c_0(f^#(i(x), h(x)))
                  , f^#(x, h(y)) -> c_1(f^#(x, j(y)))}
               Weak Rules:
                 {  i(x) -> g(x)
                  , j(x) -> h(x)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1,2}->{3}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  i(x) -> g(x)
                , j(x) -> h(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {1, 2}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(i^#) = {}, Uargs(j^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                g(x1) = [1 1 1] x1 + [0]
                        [0 1 1]      [1]
                        [0 0 1]      [1]
                h(x1) = [1 1 1] x1 + [0]
                        [0 1 1]      [1]
                        [0 0 1]      [1]
                i(x1) = [3 3 3] x1 + [3]
                        [0 3 3]      [3]
                        [0 0 3]      [3]
                j(x1) = [3 3 3] x1 + [3]
                        [0 3 3]      [3]
                        [0 0 3]      [3]
                a() = [0]
                      [0]
                      [0]
                f^#(x1, x2) = [3 0 0] x1 + [3 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                i^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                j^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^3))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,2}->{4}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  i(x) -> g(x)
                , j(x) -> h(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {1, 2}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(i^#) = {}, Uargs(j^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                g(x1) = [1 1 1] x1 + [0]
                        [0 1 1]      [1]
                        [0 0 1]      [1]
                h(x1) = [1 1 1] x1 + [0]
                        [0 1 1]      [1]
                        [0 0 1]      [1]
                i(x1) = [3 3 3] x1 + [3]
                        [0 3 3]      [3]
                        [0 0 3]      [3]
                j(x1) = [3 3 3] x1 + [3]
                        [0 3 3]      [3]
                        [0 0 3]      [3]
                a() = [0]
                      [0]
                      [0]
                f^#(x1, x2) = [3 0 0] x1 + [3 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                i^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                j^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^3))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(i^#) = {}, Uargs(j^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                h(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                i(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                j(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a() = [0]
                      [0]
                      [0]
                f^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                i^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                j^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {i^#(x) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(i^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                i^#(x1) = [0 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
                c_4() = [0]
                        [3]
                        [3]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(i^#) = {}, Uargs(j^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                h(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                i(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                j(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a() = [0]
                      [0]
                      [0]
                f^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                i^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4() = [0]
                        [0]
                        [0]
                j^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5() = [0]
                        [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {j^#(x) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(j^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                j^#(x1) = [0 0 0] x1 + [7]
                          [0 0 0]      [7]
                          [0 0 0]      [7]
                c_5() = [0]
                        [3]
                        [3]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(g(x), h(x)) -> c_0(f^#(i(x), h(x)))
              , 2: f^#(x, h(y)) -> c_1(f^#(x, j(y)))
              , 3: f^#(i(x), h(x)) -> c_2()
              , 4: f^#(x, j(y)) -> c_3()
              , 5: i^#(x) -> c_4()
              , 6: j^#(x) -> c_5()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{1,2}                                                     [       MAYBE        ]
                |
                |->{3}                                                   [         NA         ]
                |
                `->{4}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,2}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  i(x) -> g(x)
                , j(x) -> h(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {1, 2}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(i^#) = {}, Uargs(j^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                g(x1) = [1 0] x1 + [1]
                        [0 0]      [1]
                h(x1) = [0 1] x1 + [1]
                        [0 0]      [1]
                i(x1) = [1 0] x1 + [3]
                        [3 0]      [3]
                j(x1) = [0 1] x1 + [3]
                        [3 0]      [3]
                a() = [0]
                      [0]
                f^#(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [3 3]      [3 3]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                i^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                j^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(g(x), h(x)) -> c_0(f^#(i(x), h(x)))
                  , f^#(x, h(y)) -> c_1(f^#(x, j(y)))}
               Weak Rules:
                 {  i(x) -> g(x)
                  , j(x) -> h(x)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1,2}->{3}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  i(x) -> g(x)
                , j(x) -> h(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {1, 2}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(i^#) = {}, Uargs(j^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                g(x1) = [1 1] x1 + [0]
                        [0 1]      [1]
                h(x1) = [1 1] x1 + [0]
                        [0 1]      [1]
                i(x1) = [3 3] x1 + [3]
                        [0 3]      [3]
                j(x1) = [3 3] x1 + [3]
                        [0 3]      [3]
                a() = [0]
                      [0]
                f^#(x1, x2) = [3 0] x1 + [3 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                i^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                j^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,2}->{4}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  i(x) -> g(x)
                , j(x) -> h(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {1, 2}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(i^#) = {}, Uargs(j^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                g(x1) = [1 1] x1 + [0]
                        [0 1]      [1]
                h(x1) = [1 1] x1 + [0]
                        [0 1]      [1]
                i(x1) = [3 3] x1 + [3]
                        [0 3]      [3]
                j(x1) = [3 3] x1 + [3]
                        [0 3]      [3]
                a() = [0]
                      [0]
                f^#(x1, x2) = [3 0] x1 + [3 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                i^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                j^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(i^#) = {}, Uargs(j^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                h(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                i(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                j(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a() = [0]
                      [0]
                f^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                i^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                j^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {i^#(x) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(i^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                i^#(x1) = [0 0] x1 + [7]
                          [0 0]      [7]
                c_4() = [0]
                        [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(i^#) = {}, Uargs(j^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                h(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                i(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                j(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a() = [0]
                      [0]
                f^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                i^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4() = [0]
                        [0]
                j^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5() = [0]
                        [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {j^#(x) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(j^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                j^#(x1) = [0 0] x1 + [7]
                          [0 0]      [7]
                c_5() = [0]
                        [1]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(g(x), h(x)) -> c_0(f^#(i(x), h(x)))
              , 2: f^#(x, h(y)) -> c_1(f^#(x, j(y)))
              , 3: f^#(i(x), h(x)) -> c_2()
              , 4: f^#(x, j(y)) -> c_3()
              , 5: i^#(x) -> c_4()
              , 6: j^#(x) -> c_5()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{1,2}                                                     [       MAYBE        ]
                |
                |->{3}                                                   [         NA         ]
                |
                `->{4}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,2}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  i(x) -> g(x)
                , j(x) -> h(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {1, 2}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(i^#) = {}, Uargs(j^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                g(x1) = [0] x1 + [1]
                h(x1) = [1] x1 + [1]
                i(x1) = [0] x1 + [3]
                j(x1) = [1] x1 + [3]
                a() = [0]
                f^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                i^#(x1) = [0] x1 + [0]
                c_4() = [0]
                j^#(x1) = [0] x1 + [0]
                c_5() = [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(g(x), h(x)) -> c_0(f^#(i(x), h(x)))
                  , f^#(x, h(y)) -> c_1(f^#(x, j(y)))}
               Weak Rules:
                 {  i(x) -> g(x)
                  , j(x) -> h(x)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1,2}->{3}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  i(x) -> g(x)
                , j(x) -> h(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {1, 2}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(i^#) = {}, Uargs(j^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                g(x1) = [1] x1 + [0]
                h(x1) = [1] x1 + [0]
                i(x1) = [3] x1 + [3]
                j(x1) = [3] x1 + [3]
                a() = [0]
                f^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                i^#(x1) = [0] x1 + [0]
                c_4() = [0]
                j^#(x1) = [0] x1 + [0]
                c_5() = [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,2}->{4}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  i(x) -> g(x)
                , j(x) -> h(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {1, 2}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(i^#) = {}, Uargs(j^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                g(x1) = [1] x1 + [0]
                h(x1) = [1] x1 + [0]
                i(x1) = [3] x1 + [3]
                j(x1) = [3] x1 + [3]
                a() = [0]
                f^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                i^#(x1) = [0] x1 + [0]
                c_4() = [0]
                j^#(x1) = [0] x1 + [0]
                c_5() = [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(i^#) = {}, Uargs(j^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                g(x1) = [0] x1 + [0]
                h(x1) = [0] x1 + [0]
                i(x1) = [0] x1 + [0]
                j(x1) = [0] x1 + [0]
                a() = [0]
                f^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                i^#(x1) = [0] x1 + [0]
                c_4() = [0]
                j^#(x1) = [0] x1 + [0]
                c_5() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {i^#(x) -> c_4()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(i^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                i^#(x1) = [0] x1 + [7]
                c_4() = [0]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(i^#) = {}, Uargs(j^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                g(x1) = [0] x1 + [0]
                h(x1) = [0] x1 + [0]
                i(x1) = [0] x1 + [0]
                j(x1) = [0] x1 + [0]
                a() = [0]
                f^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                i^#(x1) = [0] x1 + [0]
                c_4() = [0]
                j^#(x1) = [0] x1 + [0]
                c_5() = [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    innermost DP runtime-complexity with respect to
               Strict Rules: {j^#(x) -> c_5()}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(j^#) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                j^#(x1) = [0] x1 + [7]
                c_5() = [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputZantema 08 cariboo add3

stdout:

MAYBE
 Warning when parsing problem:
                             
                               Unsupported strategy 'OUTERMOST'

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputZantema 08 cariboo add3

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  f(g(x), h(x)) -> f(i(x), h(x))
     , f(x, h(y)) -> f(x, j(y))
     , f(i(x), h(x)) -> a()
     , f(x, j(y)) -> a()
     , i(x) -> g(x)
     , j(x) -> h(x)}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(g(x), h(x)) -> c_0(f^#(i(x), h(x)))
              , 2: f^#(x, h(y)) -> c_1(f^#(x, j(y)))
              , 3: f^#(i(x), h(x)) -> c_2()
              , 4: f^#(x, j(y)) -> c_3()
              , 5: i^#(x) -> c_4(x)
              , 6: j^#(x) -> c_5(x)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{1,2}                                                     [       MAYBE        ]
                |
                |->{3}                                                   [         NA         ]
                |
                `->{4}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,2}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  i(x) -> g(x)
                , j(x) -> h(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {1, 2}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(i^#) = {}, Uargs(c_4) = {},
                 Uargs(j^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                g(x1) = [1 0 0] x1 + [1]
                        [0 0 0]      [1]
                        [0 0 0]      [3]
                h(x1) = [0 1 0] x1 + [1]
                        [0 0 0]      [1]
                        [0 0 0]      [1]
                i(x1) = [1 0 0] x1 + [3]
                        [3 0 0]      [3]
                        [3 0 0]      [3]
                j(x1) = [0 1 0] x1 + [3]
                        [3 0 0]      [3]
                        [3 0 0]      [3]
                a() = [0]
                      [0]
                      [0]
                f^#(x1, x2) = [1 0 0] x1 + [1 0 0] x2 + [0]
                              [3 3 3]      [3 3 3]      [0]
                              [3 3 3]      [3 3 3]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                i^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                j^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(g(x), h(x)) -> c_0(f^#(i(x), h(x)))
                  , f^#(x, h(y)) -> c_1(f^#(x, j(y)))}
               Weak Rules:
                 {  i(x) -> g(x)
                  , j(x) -> h(x)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1,2}->{3}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  i(x) -> g(x)
                , j(x) -> h(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {1, 2}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(i^#) = {}, Uargs(c_4) = {},
                 Uargs(j^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                g(x1) = [1 1 1] x1 + [0]
                        [0 1 1]      [1]
                        [0 0 1]      [1]
                h(x1) = [1 1 1] x1 + [0]
                        [0 1 1]      [1]
                        [0 0 1]      [1]
                i(x1) = [3 3 3] x1 + [3]
                        [0 3 3]      [3]
                        [0 0 3]      [3]
                j(x1) = [3 3 3] x1 + [3]
                        [0 3 3]      [3]
                        [0 0 3]      [3]
                a() = [0]
                      [0]
                      [0]
                f^#(x1, x2) = [3 0 0] x1 + [3 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                i^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                j^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^3))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,2}->{4}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  i(x) -> g(x)
                , j(x) -> h(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {1, 2}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(i^#) = {}, Uargs(c_4) = {},
                 Uargs(j^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                g(x1) = [1 1 1] x1 + [0]
                        [0 1 1]      [1]
                        [0 0 1]      [1]
                h(x1) = [1 1 1] x1 + [0]
                        [0 1 1]      [1]
                        [0 0 1]      [1]
                i(x1) = [3 3 3] x1 + [3]
                        [0 3 3]      [3]
                        [0 0 3]      [3]
                j(x1) = [3 3 3] x1 + [3]
                        [0 3 3]      [3]
                        [0 0 3]      [3]
                a() = [0]
                      [0]
                      [0]
                f^#(x1, x2) = [3 0 0] x1 + [3 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_1(x1) = [1 0 0] x1 + [0]
                          [0 1 0]      [0]
                          [0 0 1]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                i^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                j^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^3))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(i^#) = {}, Uargs(c_4) = {}, Uargs(j^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                h(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                i(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                j(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a() = [0]
                      [0]
                      [0]
                f^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                i^#(x1) = [3 3 3] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                j^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {i^#(x) -> c_4(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(i^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                i^#(x1) = [7 7 7] x1 + [7]
                          [7 7 7]      [7]
                          [7 7 7]      [7]
                c_4(x1) = [3 3 3] x1 + [0]
                          [3 1 3]      [1]
                          [1 1 1]      [1]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(i^#) = {}, Uargs(c_4) = {}, Uargs(j^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                            [0 0 0]      [0 0 0]      [0]
                            [0 0 0]      [0 0 0]      [0]
                g(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                h(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                i(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                j(x1) = [0 0 0] x1 + [0]
                        [0 0 0]      [0]
                        [0 0 0]      [0]
                a() = [0]
                      [0]
                      [0]
                f^#(x1, x2) = [0 0 0] x1 + [0 0 0] x2 + [0]
                              [0 0 0]      [0 0 0]      [0]
                              [0 0 0]      [0 0 0]      [0]
                c_0(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_1(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_2() = [0]
                        [0]
                        [0]
                c_3() = [0]
                        [0]
                        [0]
                i^#(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_4(x1) = [0 0 0] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                j^#(x1) = [3 3 3] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
                c_5(x1) = [1 1 1] x1 + [0]
                          [0 0 0]      [0]
                          [0 0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {j^#(x) -> c_5(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(j^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                j^#(x1) = [7 7 7] x1 + [7]
                          [7 7 7]      [7]
                          [7 7 7]      [7]
                c_5(x1) = [3 3 3] x1 + [0]
                          [3 1 3]      [1]
                          [1 1 1]      [1]
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(g(x), h(x)) -> c_0(f^#(i(x), h(x)))
              , 2: f^#(x, h(y)) -> c_1(f^#(x, j(y)))
              , 3: f^#(i(x), h(x)) -> c_2()
              , 4: f^#(x, j(y)) -> c_3()
              , 5: i^#(x) -> c_4(x)
              , 6: j^#(x) -> c_5(x)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{1,2}                                                     [       MAYBE        ]
                |
                |->{3}                                                   [         NA         ]
                |
                `->{4}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,2}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  i(x) -> g(x)
                , j(x) -> h(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {1, 2}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(i^#) = {}, Uargs(c_4) = {},
                 Uargs(j^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                g(x1) = [1 0] x1 + [1]
                        [0 0]      [1]
                h(x1) = [0 1] x1 + [1]
                        [0 0]      [1]
                i(x1) = [1 0] x1 + [3]
                        [3 0]      [3]
                j(x1) = [0 1] x1 + [3]
                        [3 0]      [3]
                a() = [0]
                      [0]
                f^#(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                              [3 3]      [3 3]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                i^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                j^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(g(x), h(x)) -> c_0(f^#(i(x), h(x)))
                  , f^#(x, h(y)) -> c_1(f^#(x, j(y)))}
               Weak Rules:
                 {  i(x) -> g(x)
                  , j(x) -> h(x)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1,2}->{3}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  i(x) -> g(x)
                , j(x) -> h(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {1, 2}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(i^#) = {}, Uargs(c_4) = {},
                 Uargs(j^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                g(x1) = [1 1] x1 + [0]
                        [0 1]      [1]
                h(x1) = [1 1] x1 + [0]
                        [0 1]      [1]
                i(x1) = [3 3] x1 + [3]
                        [0 3]      [3]
                j(x1) = [3 3] x1 + [3]
                        [0 3]      [3]
                a() = [0]
                      [0]
                f^#(x1, x2) = [3 0] x1 + [3 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                i^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                j^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,2}->{4}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  i(x) -> g(x)
                , j(x) -> h(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {1, 2}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(i^#) = {}, Uargs(c_4) = {},
                 Uargs(j^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                g(x1) = [1 1] x1 + [0]
                        [0 1]      [1]
                h(x1) = [1 1] x1 + [0]
                        [0 1]      [1]
                i(x1) = [3 3] x1 + [3]
                        [0 3]      [3]
                j(x1) = [3 3] x1 + [3]
                        [0 3]      [3]
                a() = [0]
                      [0]
                f^#(x1, x2) = [3 0] x1 + [3 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_1(x1) = [1 0] x1 + [0]
                          [0 1]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                i^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                j^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             Complexity induced by the adequate RMI: YES(?,O(n^2))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(i^#) = {}, Uargs(c_4) = {}, Uargs(j^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                h(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                i(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                j(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a() = [0]
                      [0]
                f^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                i^#(x1) = [3 3] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
                j^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {i^#(x) -> c_4(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(i^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                i^#(x1) = [7 7] x1 + [7]
                          [7 7]      [7]
                c_4(x1) = [1 3] x1 + [0]
                          [3 1]      [3]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(i^#) = {}, Uargs(c_4) = {}, Uargs(j^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                            [0 0]      [0 0]      [0]
                g(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                h(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                i(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                j(x1) = [0 0] x1 + [0]
                        [0 0]      [0]
                a() = [0]
                      [0]
                f^#(x1, x2) = [0 0] x1 + [0 0] x2 + [0]
                              [0 0]      [0 0]      [0]
                c_0(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_1(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_2() = [0]
                        [0]
                c_3() = [0]
                        [0]
                i^#(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                c_4(x1) = [0 0] x1 + [0]
                          [0 0]      [0]
                j^#(x1) = [3 3] x1 + [0]
                          [0 0]      [0]
                c_5(x1) = [1 1] x1 + [0]
                          [0 0]      [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {j^#(x) -> c_5(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(j^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                j^#(x1) = [7 7] x1 + [7]
                          [7 7]      [7]
                c_5(x1) = [1 3] x1 + [0]
                          [3 1]      [3]
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(g(x), h(x)) -> c_0(f^#(i(x), h(x)))
              , 2: f^#(x, h(y)) -> c_1(f^#(x, j(y)))
              , 3: f^#(i(x), h(x)) -> c_2()
              , 4: f^#(x, j(y)) -> c_3()
              , 5: i^#(x) -> c_4(x)
              , 6: j^#(x) -> c_5(x)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{6}                                                       [    YES(?,O(1))     ]
             
             ->{5}                                                       [    YES(?,O(1))     ]
             
             ->{1,2}                                                     [       MAYBE        ]
                |
                |->{3}                                                   [         NA         ]
                |
                `->{4}                                                   [         NA         ]
             
           
         
         Sub-problems:
         -------------
           * Path {1,2}: MAYBE
             -----------------
             
             The usable rules for this path are:
             
               {  i(x) -> g(x)
                , j(x) -> h(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {1, 2}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(i^#) = {}, Uargs(c_4) = {},
                 Uargs(j^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                g(x1) = [0] x1 + [1]
                h(x1) = [1] x1 + [1]
                i(x1) = [0] x1 + [3]
                j(x1) = [1] x1 + [3]
                a() = [0]
                f^#(x1, x2) = [2] x1 + [2] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                i^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                j^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules:
                 {  f^#(g(x), h(x)) -> c_0(f^#(i(x), h(x)))
                  , f^#(x, h(y)) -> c_1(f^#(x, j(y)))}
               Weak Rules:
                 {  i(x) -> g(x)
                  , j(x) -> h(x)}
             
             Proof Output:    
               The input cannot be shown compatible
           
           * Path {1,2}->{3}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  i(x) -> g(x)
                , j(x) -> h(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {1, 2}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(i^#) = {}, Uargs(c_4) = {},
                 Uargs(j^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                g(x1) = [1] x1 + [0]
                h(x1) = [1] x1 + [0]
                i(x1) = [3] x1 + [3]
                j(x1) = [3] x1 + [3]
                a() = [0]
                f^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                i^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                j^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {1,2}->{4}: NA
             -------------------
             
             The usable rules for this path are:
             
               {  i(x) -> g(x)
                , j(x) -> h(x)}
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {1, 2}, Uargs(c_0) = {1},
                 Uargs(c_1) = {1}, Uargs(i^#) = {}, Uargs(c_4) = {},
                 Uargs(j^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                g(x1) = [1] x1 + [0]
                h(x1) = [1] x1 + [0]
                i(x1) = [3] x1 + [3]
                j(x1) = [3] x1 + [3]
                a() = [0]
                f^#(x1, x2) = [3] x1 + [3] x2 + [0]
                c_0(x1) = [1] x1 + [0]
                c_1(x1) = [1] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                i^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                j^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
             Complexity induced by the adequate RMI: YES(?,O(n^1))
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {5}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(i^#) = {}, Uargs(c_4) = {}, Uargs(j^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                g(x1) = [0] x1 + [0]
                h(x1) = [0] x1 + [0]
                i(x1) = [0] x1 + [0]
                j(x1) = [0] x1 + [0]
                a() = [0]
                f^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                i^#(x1) = [3] x1 + [0]
                c_4(x1) = [1] x1 + [0]
                j^#(x1) = [0] x1 + [0]
                c_5(x1) = [0] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {i^#(x) -> c_4(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(i^#) = {}, Uargs(c_4) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                i^#(x1) = [7] x1 + [7]
                c_4(x1) = [1] x1 + [0]
           
           * Path {6}: YES(?,O(1))
             ---------------------
             
             The usable rules of this path are empty.
             
             The weightgap principle applies, using the following adequate RMI:
               The following argument positions are usable:
                 Uargs(f) = {}, Uargs(g) = {}, Uargs(h) = {}, Uargs(i) = {},
                 Uargs(j) = {}, Uargs(f^#) = {}, Uargs(c_0) = {}, Uargs(c_1) = {},
                 Uargs(i^#) = {}, Uargs(c_4) = {}, Uargs(j^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                f(x1, x2) = [0] x1 + [0] x2 + [0]
                g(x1) = [0] x1 + [0]
                h(x1) = [0] x1 + [0]
                i(x1) = [0] x1 + [0]
                j(x1) = [0] x1 + [0]
                a() = [0]
                f^#(x1, x2) = [0] x1 + [0] x2 + [0]
                c_0(x1) = [0] x1 + [0]
                c_1(x1) = [0] x1 + [0]
                c_2() = [0]
                c_3() = [0]
                i^#(x1) = [0] x1 + [0]
                c_4(x1) = [0] x1 + [0]
                j^#(x1) = [3] x1 + [0]
                c_5(x1) = [1] x1 + [0]
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           YES(?,O(1))
             Input Problem:    DP runtime-complexity with respect to
               Strict Rules: {j^#(x) -> c_5(x)}
               Weak Rules: {}
             
             Proof Output:    
               The following argument positions are usable:
                 Uargs(j^#) = {}, Uargs(c_5) = {}
               We have the following constructor-restricted matrix interpretation:
               Interpretation Functions:
                j^#(x1) = [7] x1 + [7]
                c_5(x1) = [1] x1 + [0]
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.