Problem Zantema 08 dupl rhs

Tool CaT

Execution TimeUnknown
Answer
MAYBE
InputZantema 08 dupl rhs

stdout:

MAYBE

Problem:
 f(h(x),c()) -> f(i(x),s(x))
 h(x) -> f(h(x),c())
 i(x) -> h(x)
 f(i(x),y) -> x

Proof:
 Open

Tool IRC1

Execution TimeUnknown
Answer
MAYBE
InputZantema 08 dupl rhs

stdout:

MAYBE
 Warning when parsing problem:
                             
                               Unsupported strategy 'OUTERMOST'

Tool IRC2

Execution TimeUnknown
Answer
MAYBE
InputZantema 08 dupl rhs

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  f(h(x), c()) -> f(i(x), s(x))
     , h(x) -> f(h(x), c())
     , i(x) -> h(x)
     , f(i(x), y) -> x}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(h(x), c()) -> c_0(f^#(i(x), s(x)))
              , 2: h^#(x) -> c_1(f^#(h(x), c()))
              , 3: i^#(x) -> c_2(h^#(x))
              , 4: f^#(i(x), y) -> c_3()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [     inherited      ]
                |
                `->{2}                                                   [     inherited      ]
                    |
                    |->{1}                                               [     inherited      ]
                    |   |
                    |   `->{4}                                           [         NA         ]
                    |
                    `->{4}                                               [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: inherited
             -------------------
             
             This path is subsumed by the proof of path {3}->{2}->{1}->{4}.
           
           * Path {3}->{2}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {3}->{2}->{1}->{4}.
           
           * Path {3}->{2}->{1}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {3}->{2}->{1}->{4}.
           
           * Path {3}->{2}->{1}->{4}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  h(x) -> f(h(x), c())
                , f(h(x), c()) -> f(i(x), s(x))
                , f(i(x), y) -> x
                , i(x) -> h(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{2}->{4}: MAYBE
             -------------------------
             
             The usable rules for this path are:
             
               {  h(x) -> f(h(x), c())
                , f(h(x), c()) -> f(i(x), s(x))
                , f(i(x), y) -> x
                , i(x) -> h(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  h^#(x) -> c_1(f^#(h(x), c()))
                  , i^#(x) -> c_2(h^#(x))
                  , f^#(i(x), y) -> c_3()
                  , h(x) -> f(h(x), c())
                  , f(h(x), c()) -> f(i(x), s(x))
                  , f(i(x), y) -> x
                  , i(x) -> h(x)}
             
             Proof Output:    
               The input cannot be shown compatible
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(h(x), c()) -> c_0(f^#(i(x), s(x)))
              , 2: h^#(x) -> c_1(f^#(h(x), c()))
              , 3: i^#(x) -> c_2(h^#(x))
              , 4: f^#(i(x), y) -> c_3()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [     inherited      ]
                |
                `->{2}                                                   [     inherited      ]
                    |
                    |->{1}                                               [     inherited      ]
                    |   |
                    |   `->{4}                                           [         NA         ]
                    |
                    `->{4}                                               [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: inherited
             -------------------
             
             This path is subsumed by the proof of path {3}->{2}->{1}->{4}.
           
           * Path {3}->{2}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {3}->{2}->{1}->{4}.
           
           * Path {3}->{2}->{1}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {3}->{2}->{1}->{4}.
           
           * Path {3}->{2}->{1}->{4}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  h(x) -> f(h(x), c())
                , f(h(x), c()) -> f(i(x), s(x))
                , f(i(x), y) -> x
                , i(x) -> h(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{2}->{4}: MAYBE
             -------------------------
             
             The usable rules for this path are:
             
               {  h(x) -> f(h(x), c())
                , f(h(x), c()) -> f(i(x), s(x))
                , f(i(x), y) -> x
                , i(x) -> h(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  h^#(x) -> c_1(f^#(h(x), c()))
                  , i^#(x) -> c_2(h^#(x))
                  , f^#(i(x), y) -> c_3()
                  , h(x) -> f(h(x), c())
                  , f(h(x), c()) -> f(i(x), s(x))
                  , f(i(x), y) -> x
                  , i(x) -> h(x)}
             
             Proof Output:    
               The input cannot be shown compatible
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(h(x), c()) -> c_0(f^#(i(x), s(x)))
              , 2: h^#(x) -> c_1(f^#(h(x), c()))
              , 3: i^#(x) -> c_2(h^#(x))
              , 4: f^#(i(x), y) -> c_3()}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [     inherited      ]
                |
                `->{2}                                                   [     inherited      ]
                    |
                    |->{1}                                               [     inherited      ]
                    |   |
                    |   `->{4}                                           [         NA         ]
                    |
                    `->{4}                                               [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: inherited
             -------------------
             
             This path is subsumed by the proof of path {3}->{2}->{1}->{4}.
           
           * Path {3}->{2}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {3}->{2}->{1}->{4}.
           
           * Path {3}->{2}->{1}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {3}->{2}->{1}->{4}.
           
           * Path {3}->{2}->{1}->{4}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  h(x) -> f(h(x), c())
                , f(h(x), c()) -> f(i(x), s(x))
                , f(i(x), y) -> x
                , i(x) -> h(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{2}->{4}: MAYBE
             -------------------------
             
             The usable rules for this path are:
             
               {  h(x) -> f(h(x), c())
                , f(h(x), c()) -> f(i(x), s(x))
                , f(i(x), y) -> x
                , i(x) -> h(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    innermost runtime-complexity with respect to
               Rules:
                 {  h^#(x) -> c_1(f^#(h(x), c()))
                  , i^#(x) -> c_2(h^#(x))
                  , f^#(i(x), y) -> c_3()
                  , h(x) -> f(h(x), c())
                  , f(h(x), c()) -> f(i(x), s(x))
                  , f(i(x), y) -> x
                  , i(x) -> h(x)}
             
             Proof Output:    
               The input cannot be shown compatible
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    

Tool RC1

Execution TimeUnknown
Answer
MAYBE
InputZantema 08 dupl rhs

stdout:

MAYBE
 Warning when parsing problem:
                             
                               Unsupported strategy 'OUTERMOST'

Tool RC2

Execution TimeUnknown
Answer
MAYBE
InputZantema 08 dupl rhs

stdout:

MAYBE

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           MAYBE
Input Problem:    runtime-complexity with respect to
  Rules:
    {  f(h(x), c()) -> f(i(x), s(x))
     , h(x) -> f(h(x), c())
     , i(x) -> h(x)
     , f(i(x), y) -> x}

Proof Output:    
  None of the processors succeeded.
  
  Details of failed attempt(s):
  -----------------------------
    1) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(h(x), c()) -> c_0(f^#(i(x), s(x)))
              , 2: h^#(x) -> c_1(f^#(h(x), c()))
              , 3: i^#(x) -> c_2(h^#(x))
              , 4: f^#(i(x), y) -> c_3(x)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [     inherited      ]
                |
                `->{2}                                                   [     inherited      ]
                    |
                    |->{1}                                               [     inherited      ]
                    |   |
                    |   `->{4}                                           [         NA         ]
                    |
                    `->{4}                                               [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: inherited
             -------------------
             
             This path is subsumed by the proof of path {3}->{2}->{1}->{4}.
           
           * Path {3}->{2}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {3}->{2}->{1}->{4}.
           
           * Path {3}->{2}->{1}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {3}->{2}->{1}->{4}.
           
           * Path {3}->{2}->{1}->{4}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  h(x) -> f(h(x), c())
                , f(h(x), c()) -> f(i(x), s(x))
                , f(i(x), y) -> x
                , i(x) -> h(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{2}->{4}: MAYBE
             -------------------------
             
             The usable rules for this path are:
             
               {  h(x) -> f(h(x), c())
                , f(h(x), c()) -> f(i(x), s(x))
                , f(i(x), y) -> x
                , i(x) -> h(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 3'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  h^#(x) -> c_1(f^#(h(x), c()))
                  , i^#(x) -> c_2(h^#(x))
                  , f^#(i(x), y) -> c_3(x)
                  , h(x) -> f(h(x), c())
                  , f(h(x), c()) -> f(i(x), s(x))
                  , f(i(x), y) -> x
                  , i(x) -> h(x)}
             
             Proof Output:    
               The input cannot be shown compatible
    
    2) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(h(x), c()) -> c_0(f^#(i(x), s(x)))
              , 2: h^#(x) -> c_1(f^#(h(x), c()))
              , 3: i^#(x) -> c_2(h^#(x))
              , 4: f^#(i(x), y) -> c_3(x)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [     inherited      ]
                |
                `->{2}                                                   [     inherited      ]
                    |
                    |->{1}                                               [     inherited      ]
                    |   |
                    |   `->{4}                                           [         NA         ]
                    |
                    `->{4}                                               [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: inherited
             -------------------
             
             This path is subsumed by the proof of path {3}->{2}->{1}->{4}.
           
           * Path {3}->{2}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {3}->{2}->{1}->{4}.
           
           * Path {3}->{2}->{1}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {3}->{2}->{1}->{4}.
           
           * Path {3}->{2}->{1}->{4}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  h(x) -> f(h(x), c())
                , f(h(x), c()) -> f(i(x), s(x))
                , f(i(x), y) -> x
                , i(x) -> h(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{2}->{4}: MAYBE
             -------------------------
             
             The usable rules for this path are:
             
               {  h(x) -> f(h(x), c())
                , f(h(x), c()) -> f(i(x), s(x))
                , f(i(x), y) -> x
                , i(x) -> h(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 2'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  h^#(x) -> c_1(f^#(h(x), c()))
                  , i^#(x) -> c_2(h^#(x))
                  , f^#(i(x), y) -> c_3(x)
                  , h(x) -> f(h(x), c())
                  , f(h(x), c()) -> f(i(x), s(x))
                  , f(i(x), y) -> x
                  , i(x) -> h(x)}
             
             Proof Output:    
               The input cannot be shown compatible
    
    3) 'wdg' failed due to the following reason:
         Transformation Details:
         -----------------------
           We have computed the following set of weak (innermost) dependency pairs:
           
             {  1: f^#(h(x), c()) -> c_0(f^#(i(x), s(x)))
              , 2: h^#(x) -> c_1(f^#(h(x), c()))
              , 3: i^#(x) -> c_2(h^#(x))
              , 4: f^#(i(x), y) -> c_3(x)}
           
           Following Dependency Graph (modulo SCCs) was computed. (Answers to
           subproofs are indicated to the right.)
           
             ->{3}                                                       [     inherited      ]
                |
                `->{2}                                                   [     inherited      ]
                    |
                    |->{1}                                               [     inherited      ]
                    |   |
                    |   `->{4}                                           [         NA         ]
                    |
                    `->{4}                                               [       MAYBE        ]
             
           
         
         Sub-problems:
         -------------
           * Path {3}: inherited
             -------------------
             
             This path is subsumed by the proof of path {3}->{2}->{1}->{4}.
           
           * Path {3}->{2}: inherited
             ------------------------
             
             This path is subsumed by the proof of path {3}->{2}->{1}->{4}.
           
           * Path {3}->{2}->{1}: inherited
             -----------------------------
             
             This path is subsumed by the proof of path {3}->{2}->{1}->{4}.
           
           * Path {3}->{2}->{1}->{4}: NA
             ---------------------------
             
             The usable rules for this path are:
             
               {  h(x) -> f(h(x), c())
                , f(h(x), c()) -> f(i(x), s(x))
                , f(i(x), y) -> x
                , i(x) -> h(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We have not generated a proof for the resulting sub-problem.
           
           * Path {3}->{2}->{4}: MAYBE
             -------------------------
             
             The usable rules for this path are:
             
               {  h(x) -> f(h(x), c())
                , f(h(x), c()) -> f(i(x), s(x))
                , f(i(x), y) -> x
                , i(x) -> h(x)}
             
             The weight gap principle does not apply:
               The input cannot be shown compatible
             Complexity induced by the adequate RMI: MAYBE
             
             We apply the sub-processor on the resulting sub-problem:
             
             'matrix-interpretation of dimension 1'
             --------------------------------------
             Answer:           MAYBE
             Input Problem:    runtime-complexity with respect to
               Rules:
                 {  h^#(x) -> c_1(f^#(h(x), c()))
                  , i^#(x) -> c_2(h^#(x))
                  , f^#(i(x), y) -> c_3(x)
                  , h(x) -> f(h(x), c())
                  , f(h(x), c()) -> f(i(x), s(x))
                  , f(i(x), y) -> x
                  , i(x) -> h(x)}
             
             Proof Output:    
               The input cannot be shown compatible
    
    4) 'matrix-interpretation of dimension 1' failed due to the following reason:
         The input cannot be shown compatible
    
    5) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.
    
    6) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason:
         match-boundness of the problem could not be verified.