Tool CaT
stdout:
YES(?,O(n^1))
Problem:
f(g(x)) -> g(g(x))
g(x) -> f(f(x))
f(f(x)) -> x
Proof:
Bounds Processor:
bound: 1
enrichment: match
automaton:
final states: {3,2}
transitions:
f1(5) -> 6*
f1(4) -> 5*
f0(1) -> 2*
g0(1) -> 3*
f40() -> 1*
1 -> 4*
4 -> 6,3
6 -> 3*
problem:
QedTool IRC1
stdout:
YES(?,O(n^1))
Warning when parsing problem:
Unsupported strategy 'OUTERMOST'Tool IRC2
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ f(g(x)) -> g(g(x))
, g(x) -> f(f(x))
, f(f(x)) -> x}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ f(g(x)) -> g(g(x))
, g(x) -> f(f(x))
, f(f(x)) -> x}
Proof Output:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ f_0(2) -> 1
, f_1(2) -> 3
, f_1(3) -> 1
, g_0(2) -> 1}Tool RC1
stdout:
YES(?,O(n^1))
Warning when parsing problem:
Unsupported strategy 'OUTERMOST'Tool RC2
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ f(g(x)) -> g(g(x))
, g(x) -> f(f(x))
, f(f(x)) -> x}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ f(g(x)) -> g(g(x))
, g(x) -> f(f(x))
, f(f(x)) -> x}
Proof Output:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ f_0(2) -> 1
, f_1(2) -> 3
, f_1(3) -> 1
, g_0(2) -> 1}