Problem Zantema 08 inn out

Tool CaT

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputZantema 08 inn out

stdout:

YES(?,O(n^1))

Problem:
 f(g(x)) -> f(g(g(x)))
 g(g(g(x))) -> a()

Proof:
 Bounds Processor:
  bound: 0
  enrichment: match
  automaton:
   final states: {3,2}
   transitions:
    f0(1) -> 2*
    g0(1) -> 3*
    a0() -> 1*
  problem:
   
  Qed

Tool IRC1

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputZantema 08 inn out

stdout:

YES(?,O(n^1))
 Warning when parsing problem:
                             
                               Unsupported strategy 'OUTERMOST'

Tool IRC2

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputZantema 08 inn out

stdout:

YES(?,O(n^1))

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  f(g(x)) -> f(g(g(x)))
     , g(g(g(x))) -> a()}

Proof Output:    
  'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
  
  Details:
  --------
    'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
     'Bounds with minimal-enrichment and initial automaton 'match''
     --------------------------------------------------------------
     Answer:           YES(?,O(n^1))
     Input Problem:    innermost runtime-complexity with respect to
       Rules:
         {  f(g(x)) -> f(g(g(x)))
          , g(g(g(x))) -> a()}
     
     Proof Output:    
       The problem is match-bounded by 0.
       The enriched problem is compatible with the following automaton:
       {  f_0(2) -> 1
        , g_0(2) -> 1
        , a_0() -> 2}

Tool RC1

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputZantema 08 inn out

stdout:

YES(?,O(n^1))
 Warning when parsing problem:
                             
                               Unsupported strategy 'OUTERMOST'

Tool RC2

Execution TimeUnknown
Answer
YES(?,O(n^1))
InputZantema 08 inn out

stdout:

YES(?,O(n^1))

'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    runtime-complexity with respect to
  Rules:
    {  f(g(x)) -> f(g(g(x)))
     , g(g(g(x))) -> a()}

Proof Output:    
  'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
  
  Details:
  --------
    'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
     'Bounds with minimal-enrichment and initial automaton 'match''
     --------------------------------------------------------------
     Answer:           YES(?,O(n^1))
     Input Problem:    runtime-complexity with respect to
       Rules:
         {  f(g(x)) -> f(g(g(x)))
          , g(g(g(x))) -> a()}
     
     Proof Output:    
       The problem is match-bounded by 0.
       The enriched problem is compatible with the following automaton:
       {  f_0(2) -> 1
        , g_0(2) -> 1
        , a_0() -> 2}