Tool CaT
stdout:
YES(?,O(n^1))
Problem:
a(a(a(x))) -> c()
b(u(x)) -> b(d(x))
d(a(x)) -> a(d(x))
d(b(x)) -> u(a(b(x)))
a(u(x)) -> u(a(x))
Proof:
Bounds Processor:
bound: 1
enrichment: match
automaton:
final states: {5,4,3}
transitions:
u1(17) -> 18*
a1(24) -> 25*
a1(16) -> 17*
b1(7) -> 8*
d1(14) -> 15*
d1(6) -> 7*
a0(2) -> 3*
a0(1) -> 3*
c0() -> 1*
b0(2) -> 4*
b0(1) -> 4*
u0(2) -> 2*
u0(1) -> 2*
d0(2) -> 5*
d0(1) -> 5*
1 -> 24,14
2 -> 16,6
8 -> 4*
15 -> 7*
18 -> 17,3
25 -> 17*
problem:
QedTool IRC1
stdout:
YES(?,O(n^1))
Warning when parsing problem:
Unsupported strategy 'OUTERMOST'Tool IRC2
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ a(a(a(x))) -> c()
, b(u(x)) -> b(d(x))
, d(a(x)) -> a(d(x))
, d(b(x)) -> u(a(b(x)))
, a(u(x)) -> u(a(x))}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ a(a(a(x))) -> c()
, b(u(x)) -> b(d(x))
, d(a(x)) -> a(d(x))
, d(b(x)) -> u(a(b(x)))
, a(u(x)) -> u(a(x))}
Proof Output:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ a_0(2) -> 1
, a_1(2) -> 4
, c_0() -> 2
, b_0(2) -> 1
, b_1(3) -> 1
, u_0(2) -> 2
, u_1(4) -> 1
, u_1(4) -> 4
, d_0(2) -> 1
, d_1(2) -> 3}Tool RC1
stdout:
YES(?,O(n^1))
Warning when parsing problem:
Unsupported strategy 'OUTERMOST'Tool RC2
stdout:
YES(?,O(n^1))
'Fastest (timeout of 60.0 seconds)'
-----------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ a(a(a(x))) -> c()
, b(u(x)) -> b(d(x))
, d(a(x)) -> a(d(x))
, d(b(x)) -> u(a(b(x)))
, a(u(x)) -> u(a(x))}
Proof Output:
'Bounds with minimal-enrichment and initial automaton 'match'' proved the best result:
Details:
--------
'Bounds with minimal-enrichment and initial automaton 'match'' succeeded with the following output:
'Bounds with minimal-enrichment and initial automaton 'match''
--------------------------------------------------------------
Answer: YES(?,O(n^1))
Input Problem: runtime-complexity with respect to
Rules:
{ a(a(a(x))) -> c()
, b(u(x)) -> b(d(x))
, d(a(x)) -> a(d(x))
, d(b(x)) -> u(a(b(x)))
, a(u(x)) -> u(a(x))}
Proof Output:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ a_0(2) -> 1
, a_1(2) -> 4
, c_0() -> 2
, b_0(2) -> 1
, b_1(3) -> 1
, u_0(2) -> 2
, u_1(4) -> 1
, u_1(4) -> 4
, d_0(2) -> 1
, d_1(2) -> 3}