LMPO
MAYBE
We consider the following Problem:
Strict Trs:
{ app(x, y) -> helpa(0(), plus(length(x), length(y)), x, y)
, plus(x, 0()) -> x
, plus(x, s(y)) -> s(plus(x, y))
, length(nil()) -> 0()
, length(cons(x, y)) -> s(length(y))
, helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs)
, ge(x, 0()) -> true()
, ge(0(), s(x)) -> false()
, ge(s(x), s(y)) -> ge(x, y)
, if(true(), c, l, ys, zs) -> nil()
, if(false(), c, l, ys, zs) ->
helpb(c, l, greater(ys, zs), smaller(ys, zs))
, greater(ys, zs) -> helpc(ge(length(ys), length(zs)), ys, zs)
, smaller(ys, zs) -> helpc(ge(length(ys), length(zs)), zs, ys)
, helpc(true(), ys, zs) -> ys
, helpc(false(), ys, zs) -> zs
, helpb(c, l, cons(y, ys), zs) -> cons(y, helpa(s(c), l, ys, zs))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
MPO
MAYBE
We consider the following Problem:
Strict Trs:
{ app(x, y) -> helpa(0(), plus(length(x), length(y)), x, y)
, plus(x, 0()) -> x
, plus(x, s(y)) -> s(plus(x, y))
, length(nil()) -> 0()
, length(cons(x, y)) -> s(length(y))
, helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs)
, ge(x, 0()) -> true()
, ge(0(), s(x)) -> false()
, ge(s(x), s(y)) -> ge(x, y)
, if(true(), c, l, ys, zs) -> nil()
, if(false(), c, l, ys, zs) ->
helpb(c, l, greater(ys, zs), smaller(ys, zs))
, greater(ys, zs) -> helpc(ge(length(ys), length(zs)), ys, zs)
, smaller(ys, zs) -> helpc(ge(length(ys), length(zs)), zs, ys)
, helpc(true(), ys, zs) -> ys
, helpc(false(), ys, zs) -> zs
, helpb(c, l, cons(y, ys), zs) -> cons(y, helpa(s(c), l, ys, zs))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ app(x, y) -> helpa(0(), plus(length(x), length(y)), x, y)
, plus(x, 0()) -> x
, plus(x, s(y)) -> s(plus(x, y))
, length(nil()) -> 0()
, length(cons(x, y)) -> s(length(y))
, helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs)
, ge(x, 0()) -> true()
, ge(0(), s(x)) -> false()
, ge(s(x), s(y)) -> ge(x, y)
, if(true(), c, l, ys, zs) -> nil()
, if(false(), c, l, ys, zs) ->
helpb(c, l, greater(ys, zs), smaller(ys, zs))
, greater(ys, zs) -> helpc(ge(length(ys), length(zs)), ys, zs)
, smaller(ys, zs) -> helpc(ge(length(ys), length(zs)), zs, ys)
, helpc(true(), ys, zs) -> ys
, helpc(false(), ys, zs) -> zs
, helpb(c, l, cons(y, ys), zs) -> cons(y, helpa(s(c), l, ys, zs))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ app(x, y) -> helpa(0(), plus(length(x), length(y)), x, y)
, plus(x, 0()) -> x
, plus(x, s(y)) -> s(plus(x, y))
, length(nil()) -> 0()
, length(cons(x, y)) -> s(length(y))
, helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs)
, ge(x, 0()) -> true()
, ge(0(), s(x)) -> false()
, ge(s(x), s(y)) -> ge(x, y)
, if(true(), c, l, ys, zs) -> nil()
, if(false(), c, l, ys, zs) ->
helpb(c, l, greater(ys, zs), smaller(ys, zs))
, greater(ys, zs) -> helpc(ge(length(ys), length(zs)), ys, zs)
, smaller(ys, zs) -> helpc(ge(length(ys), length(zs)), zs, ys)
, helpc(true(), ys, zs) -> ys
, helpc(false(), ys, zs) -> zs
, helpb(c, l, cons(y, ys), zs) -> cons(y, helpa(s(c), l, ys, zs))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ app(x, y) -> helpa(0(), plus(length(x), length(y)), x, y)
, plus(x, 0()) -> x
, plus(x, s(y)) -> s(plus(x, y))
, length(nil()) -> 0()
, length(cons(x, y)) -> s(length(y))
, helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs)
, ge(x, 0()) -> true()
, ge(0(), s(x)) -> false()
, ge(s(x), s(y)) -> ge(x, y)
, if(true(), c, l, ys, zs) -> nil()
, if(false(), c, l, ys, zs) ->
helpb(c, l, greater(ys, zs), smaller(ys, zs))
, greater(ys, zs) -> helpc(ge(length(ys), length(zs)), ys, zs)
, smaller(ys, zs) -> helpc(ge(length(ys), length(zs)), zs, ys)
, helpc(true(), ys, zs) -> ys
, helpc(false(), ys, zs) -> zs
, helpb(c, l, cons(y, ys), zs) -> cons(y, helpa(s(c), l, ys, zs))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ app(x, y) -> helpa(0(), plus(length(x), length(y)), x, y)
, plus(x, 0()) -> x
, plus(x, s(y)) -> s(plus(x, y))
, length(nil()) -> 0()
, length(cons(x, y)) -> s(length(y))
, helpa(c, l, ys, zs) -> if(ge(c, l), c, l, ys, zs)
, ge(x, 0()) -> true()
, ge(0(), s(x)) -> false()
, ge(s(x), s(y)) -> ge(x, y)
, if(true(), c, l, ys, zs) -> nil()
, if(false(), c, l, ys, zs) ->
helpb(c, l, greater(ys, zs), smaller(ys, zs))
, greater(ys, zs) -> helpc(ge(length(ys), length(zs)), ys, zs)
, smaller(ys, zs) -> helpc(ge(length(ys), length(zs)), zs, ys)
, helpc(true(), ys, zs) -> ys
, helpc(false(), ys, zs) -> zs
, helpb(c, l, cons(y, ys), zs) -> cons(y, helpa(s(c), l, ys, zs))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..