LMPO
MAYBE
We consider the following Problem:
Strict Trs:
{ numbers() -> d(0())
, d(x) -> if(le(x, nr()), x)
, if(true(), x) -> cons(x, d(s(x)))
, if(false(), x) -> nil()
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)
, nr() -> ack(s(s(s(s(s(s(0())))))), 0())
, ack(0(), x) -> s(x)
, ack(s(x), 0()) -> ack(x, s(0()))
, ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
MPO
MAYBE
We consider the following Problem:
Strict Trs:
{ numbers() -> d(0())
, d(x) -> if(le(x, nr()), x)
, if(true(), x) -> cons(x, d(s(x)))
, if(false(), x) -> nil()
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)
, nr() -> ack(s(s(s(s(s(s(0())))))), 0())
, ack(0(), x) -> s(x)
, ack(s(x), 0()) -> ack(x, s(0()))
, ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ numbers() -> d(0())
, d(x) -> if(le(x, nr()), x)
, if(true(), x) -> cons(x, d(s(x)))
, if(false(), x) -> nil()
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)
, nr() -> ack(s(s(s(s(s(s(0())))))), 0())
, ack(0(), x) -> s(x)
, ack(s(x), 0()) -> ack(x, s(0()))
, ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ numbers() -> d(0())
, d(x) -> if(le(x, nr()), x)
, if(true(), x) -> cons(x, d(s(x)))
, if(false(), x) -> nil()
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)
, nr() -> ack(s(s(s(s(s(s(0())))))), 0())
, ack(0(), x) -> s(x)
, ack(s(x), 0()) -> ack(x, s(0()))
, ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ numbers() -> d(0())
, d(x) -> if(le(x, nr()), x)
, if(true(), x) -> cons(x, d(s(x)))
, if(false(), x) -> nil()
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)
, nr() -> ack(s(s(s(s(s(s(0())))))), 0())
, ack(0(), x) -> s(x)
, ack(s(x), 0()) -> ack(x, s(0()))
, ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ numbers() -> d(0())
, d(x) -> if(le(x, nr()), x)
, if(true(), x) -> cons(x, d(s(x)))
, if(false(), x) -> nil()
, le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)
, nr() -> ack(s(s(s(s(s(s(0())))))), 0())
, ack(0(), x) -> s(x)
, ack(s(x), 0()) -> ack(x, s(0()))
, ack(s(x), s(y)) -> ack(x, ack(s(x), y))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..