LMPO
MAYBE
We consider the following Problem:
Strict Trs:
{ le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)
, quot(x, 0()) -> quotZeroErro()
, quot(x, s(y)) -> quotIter(x, s(y), 0(), 0(), 0())
, quotIter(x, s(y), z, u, v) -> if(le(x, z), x, s(y), z, u, v)
, if(true(), x, y, z, u, v) -> v
, if(false(), x, y, z, u, v) ->
if2(le(y, s(u)), x, y, s(z), s(u), v)
, if2(false(), x, y, z, u, v) -> quotIter(x, y, z, u, v)
, if2(true(), x, y, z, u, v) -> quotIter(x, y, z, 0(), s(v))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
MPO
MAYBE
We consider the following Problem:
Strict Trs:
{ le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)
, quot(x, 0()) -> quotZeroErro()
, quot(x, s(y)) -> quotIter(x, s(y), 0(), 0(), 0())
, quotIter(x, s(y), z, u, v) -> if(le(x, z), x, s(y), z, u, v)
, if(true(), x, y, z, u, v) -> v
, if(false(), x, y, z, u, v) ->
if2(le(y, s(u)), x, y, s(z), s(u), v)
, if2(false(), x, y, z, u, v) -> quotIter(x, y, z, u, v)
, if2(true(), x, y, z, u, v) -> quotIter(x, y, z, 0(), s(v))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)
, quot(x, 0()) -> quotZeroErro()
, quot(x, s(y)) -> quotIter(x, s(y), 0(), 0(), 0())
, quotIter(x, s(y), z, u, v) -> if(le(x, z), x, s(y), z, u, v)
, if(true(), x, y, z, u, v) -> v
, if(false(), x, y, z, u, v) ->
if2(le(y, s(u)), x, y, s(z), s(u), v)
, if2(false(), x, y, z, u, v) -> quotIter(x, y, z, u, v)
, if2(true(), x, y, z, u, v) -> quotIter(x, y, z, 0(), s(v))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)
, quot(x, 0()) -> quotZeroErro()
, quot(x, s(y)) -> quotIter(x, s(y), 0(), 0(), 0())
, quotIter(x, s(y), z, u, v) -> if(le(x, z), x, s(y), z, u, v)
, if(true(), x, y, z, u, v) -> v
, if(false(), x, y, z, u, v) ->
if2(le(y, s(u)), x, y, s(z), s(u), v)
, if2(false(), x, y, z, u, v) -> quotIter(x, y, z, u, v)
, if2(true(), x, y, z, u, v) -> quotIter(x, y, z, 0(), s(v))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)
, quot(x, 0()) -> quotZeroErro()
, quot(x, s(y)) -> quotIter(x, s(y), 0(), 0(), 0())
, quotIter(x, s(y), z, u, v) -> if(le(x, z), x, s(y), z, u, v)
, if(true(), x, y, z, u, v) -> v
, if(false(), x, y, z, u, v) ->
if2(le(y, s(u)), x, y, s(z), s(u), v)
, if2(false(), x, y, z, u, v) -> quotIter(x, y, z, u, v)
, if2(true(), x, y, z, u, v) -> quotIter(x, y, z, 0(), s(v))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)
, quot(x, 0()) -> quotZeroErro()
, quot(x, s(y)) -> quotIter(x, s(y), 0(), 0(), 0())
, quotIter(x, s(y), z, u, v) -> if(le(x, z), x, s(y), z, u, v)
, if(true(), x, y, z, u, v) -> v
, if(false(), x, y, z, u, v) ->
if2(le(y, s(u)), x, y, s(z), s(u), v)
, if2(false(), x, y, z, u, v) -> quotIter(x, y, z, u, v)
, if2(true(), x, y, z, u, v) -> quotIter(x, y, z, 0(), s(v))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..