LMPO
MAYBE
We consider the following Problem:
Strict Trs:
{ last(nil()) -> 0()
, last(cons(x, nil())) -> x
, last(cons(x, cons(y, xs))) -> last(cons(y, xs))
, del(x, nil()) -> nil()
, del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs)
, if(true(), x, y, xs) -> xs
, if(false(), x, y, xs) -> cons(y, del(x, xs))
, eq(0(), 0()) -> true()
, eq(0(), s(y)) -> false()
, eq(s(x), 0()) -> false()
, eq(s(x), s(y)) -> eq(x, y)
, reverse(nil()) -> nil()
, reverse(cons(x, xs)) ->
cons(last(cons(x, xs)),
reverse(del(last(cons(x, xs)), cons(x, xs))))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
MPO
MAYBE
We consider the following Problem:
Strict Trs:
{ last(nil()) -> 0()
, last(cons(x, nil())) -> x
, last(cons(x, cons(y, xs))) -> last(cons(y, xs))
, del(x, nil()) -> nil()
, del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs)
, if(true(), x, y, xs) -> xs
, if(false(), x, y, xs) -> cons(y, del(x, xs))
, eq(0(), 0()) -> true()
, eq(0(), s(y)) -> false()
, eq(s(x), 0()) -> false()
, eq(s(x), s(y)) -> eq(x, y)
, reverse(nil()) -> nil()
, reverse(cons(x, xs)) ->
cons(last(cons(x, xs)),
reverse(del(last(cons(x, xs)), cons(x, xs))))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ last(nil()) -> 0()
, last(cons(x, nil())) -> x
, last(cons(x, cons(y, xs))) -> last(cons(y, xs))
, del(x, nil()) -> nil()
, del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs)
, if(true(), x, y, xs) -> xs
, if(false(), x, y, xs) -> cons(y, del(x, xs))
, eq(0(), 0()) -> true()
, eq(0(), s(y)) -> false()
, eq(s(x), 0()) -> false()
, eq(s(x), s(y)) -> eq(x, y)
, reverse(nil()) -> nil()
, reverse(cons(x, xs)) ->
cons(last(cons(x, xs)),
reverse(del(last(cons(x, xs)), cons(x, xs))))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ last(nil()) -> 0()
, last(cons(x, nil())) -> x
, last(cons(x, cons(y, xs))) -> last(cons(y, xs))
, del(x, nil()) -> nil()
, del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs)
, if(true(), x, y, xs) -> xs
, if(false(), x, y, xs) -> cons(y, del(x, xs))
, eq(0(), 0()) -> true()
, eq(0(), s(y)) -> false()
, eq(s(x), 0()) -> false()
, eq(s(x), s(y)) -> eq(x, y)
, reverse(nil()) -> nil()
, reverse(cons(x, xs)) ->
cons(last(cons(x, xs)),
reverse(del(last(cons(x, xs)), cons(x, xs))))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ last(nil()) -> 0()
, last(cons(x, nil())) -> x
, last(cons(x, cons(y, xs))) -> last(cons(y, xs))
, del(x, nil()) -> nil()
, del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs)
, if(true(), x, y, xs) -> xs
, if(false(), x, y, xs) -> cons(y, del(x, xs))
, eq(0(), 0()) -> true()
, eq(0(), s(y)) -> false()
, eq(s(x), 0()) -> false()
, eq(s(x), s(y)) -> eq(x, y)
, reverse(nil()) -> nil()
, reverse(cons(x, xs)) ->
cons(last(cons(x, xs)),
reverse(del(last(cons(x, xs)), cons(x, xs))))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ last(nil()) -> 0()
, last(cons(x, nil())) -> x
, last(cons(x, cons(y, xs))) -> last(cons(y, xs))
, del(x, nil()) -> nil()
, del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs)
, if(true(), x, y, xs) -> xs
, if(false(), x, y, xs) -> cons(y, del(x, xs))
, eq(0(), 0()) -> true()
, eq(0(), s(y)) -> false()
, eq(s(x), 0()) -> false()
, eq(s(x), s(y)) -> eq(x, y)
, reverse(nil()) -> nil()
, reverse(cons(x, xs)) ->
cons(last(cons(x, xs)),
reverse(del(last(cons(x, xs)), cons(x, xs))))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..