LMPO
MAYBE
We consider the following Problem:
Strict Trs:
{ le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)
, eq(0(), 0()) -> true()
, eq(0(), s(y)) -> false()
, eq(s(x), 0()) -> false()
, eq(s(x), s(y)) -> eq(x, y)
, if1(true(), x, y, xs) -> min(x, xs)
, if1(false(), x, y, xs) -> min(y, xs)
, if2(true(), x, y, xs) -> xs
, if2(false(), x, y, xs) -> cons(y, del(x, xs))
, minsort(nil()) -> nil()
, minsort(cons(x, y)) ->
cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
, min(x, nil()) -> x
, min(x, cons(y, z)) -> if1(le(x, y), x, y, z)
, del(x, nil()) -> nil()
, del(x, cons(y, z)) -> if2(eq(x, y), x, y, z)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
MPO
MAYBE
We consider the following Problem:
Strict Trs:
{ le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)
, eq(0(), 0()) -> true()
, eq(0(), s(y)) -> false()
, eq(s(x), 0()) -> false()
, eq(s(x), s(y)) -> eq(x, y)
, if1(true(), x, y, xs) -> min(x, xs)
, if1(false(), x, y, xs) -> min(y, xs)
, if2(true(), x, y, xs) -> xs
, if2(false(), x, y, xs) -> cons(y, del(x, xs))
, minsort(nil()) -> nil()
, minsort(cons(x, y)) ->
cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
, min(x, nil()) -> x
, min(x, cons(y, z)) -> if1(le(x, y), x, y, z)
, del(x, nil()) -> nil()
, del(x, cons(y, z)) -> if2(eq(x, y), x, y, z)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)
, eq(0(), 0()) -> true()
, eq(0(), s(y)) -> false()
, eq(s(x), 0()) -> false()
, eq(s(x), s(y)) -> eq(x, y)
, if1(true(), x, y, xs) -> min(x, xs)
, if1(false(), x, y, xs) -> min(y, xs)
, if2(true(), x, y, xs) -> xs
, if2(false(), x, y, xs) -> cons(y, del(x, xs))
, minsort(nil()) -> nil()
, minsort(cons(x, y)) ->
cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
, min(x, nil()) -> x
, min(x, cons(y, z)) -> if1(le(x, y), x, y, z)
, del(x, nil()) -> nil()
, del(x, cons(y, z)) -> if2(eq(x, y), x, y, z)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)
, eq(0(), 0()) -> true()
, eq(0(), s(y)) -> false()
, eq(s(x), 0()) -> false()
, eq(s(x), s(y)) -> eq(x, y)
, if1(true(), x, y, xs) -> min(x, xs)
, if1(false(), x, y, xs) -> min(y, xs)
, if2(true(), x, y, xs) -> xs
, if2(false(), x, y, xs) -> cons(y, del(x, xs))
, minsort(nil()) -> nil()
, minsort(cons(x, y)) ->
cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
, min(x, nil()) -> x
, min(x, cons(y, z)) -> if1(le(x, y), x, y, z)
, del(x, nil()) -> nil()
, del(x, cons(y, z)) -> if2(eq(x, y), x, y, z)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)
, eq(0(), 0()) -> true()
, eq(0(), s(y)) -> false()
, eq(s(x), 0()) -> false()
, eq(s(x), s(y)) -> eq(x, y)
, if1(true(), x, y, xs) -> min(x, xs)
, if1(false(), x, y, xs) -> min(y, xs)
, if2(true(), x, y, xs) -> xs
, if2(false(), x, y, xs) -> cons(y, del(x, xs))
, minsort(nil()) -> nil()
, minsort(cons(x, y)) ->
cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
, min(x, nil()) -> x
, min(x, cons(y, z)) -> if1(le(x, y), x, y, z)
, del(x, nil()) -> nil()
, del(x, cons(y, z)) -> if2(eq(x, y), x, y, z)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ le(0(), y) -> true()
, le(s(x), 0()) -> false()
, le(s(x), s(y)) -> le(x, y)
, eq(0(), 0()) -> true()
, eq(0(), s(y)) -> false()
, eq(s(x), 0()) -> false()
, eq(s(x), s(y)) -> eq(x, y)
, if1(true(), x, y, xs) -> min(x, xs)
, if1(false(), x, y, xs) -> min(y, xs)
, if2(true(), x, y, xs) -> xs
, if2(false(), x, y, xs) -> cons(y, del(x, xs))
, minsort(nil()) -> nil()
, minsort(cons(x, y)) ->
cons(min(x, y), minsort(del(min(x, y), cons(x, y))))
, min(x, nil()) -> x
, min(x, cons(y, z)) -> if1(le(x, y), x, y, z)
, del(x, nil()) -> nil()
, del(x, cons(y, z)) -> if2(eq(x, y), x, y, z)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..