LMPO
MAYBE
We consider the following Problem:
Strict Trs:
{ cond1(true(), x) -> cond2(even(x), x)
, cond2(true(), x) -> cond1(neq(x, 0()), div2(x))
, cond2(false(), x) -> cond1(neq(x, 0()), p(x))
, neq(0(), 0()) -> false()
, neq(0(), s(x)) -> true()
, neq(s(x), 0()) -> true()
, neq(s(x), s(y())) -> neq(x, y())
, even(0()) -> true()
, even(s(0())) -> false()
, even(s(s(x))) -> even(x)
, div2(0()) -> 0()
, div2(s(0())) -> 0()
, div2(s(s(x))) -> s(div2(x))
, p(0()) -> 0()
, p(s(x)) -> x}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
MPO
MAYBE
We consider the following Problem:
Strict Trs:
{ cond1(true(), x) -> cond2(even(x), x)
, cond2(true(), x) -> cond1(neq(x, 0()), div2(x))
, cond2(false(), x) -> cond1(neq(x, 0()), p(x))
, neq(0(), 0()) -> false()
, neq(0(), s(x)) -> true()
, neq(s(x), 0()) -> true()
, neq(s(x), s(y())) -> neq(x, y())
, even(0()) -> true()
, even(s(0())) -> false()
, even(s(s(x))) -> even(x)
, div2(0()) -> 0()
, div2(s(0())) -> 0()
, div2(s(s(x))) -> s(div2(x))
, p(0()) -> 0()
, p(s(x)) -> x}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ cond1(true(), x) -> cond2(even(x), x)
, cond2(true(), x) -> cond1(neq(x, 0()), div2(x))
, cond2(false(), x) -> cond1(neq(x, 0()), p(x))
, neq(0(), 0()) -> false()
, neq(0(), s(x)) -> true()
, neq(s(x), 0()) -> true()
, neq(s(x), s(y())) -> neq(x, y())
, even(0()) -> true()
, even(s(0())) -> false()
, even(s(s(x))) -> even(x)
, div2(0()) -> 0()
, div2(s(0())) -> 0()
, div2(s(s(x))) -> s(div2(x))
, p(0()) -> 0()
, p(s(x)) -> x}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ cond1(true(), x) -> cond2(even(x), x)
, cond2(true(), x) -> cond1(neq(x, 0()), div2(x))
, cond2(false(), x) -> cond1(neq(x, 0()), p(x))
, neq(0(), 0()) -> false()
, neq(0(), s(x)) -> true()
, neq(s(x), 0()) -> true()
, neq(s(x), s(y())) -> neq(x, y())
, even(0()) -> true()
, even(s(0())) -> false()
, even(s(s(x))) -> even(x)
, div2(0()) -> 0()
, div2(s(0())) -> 0()
, div2(s(s(x))) -> s(div2(x))
, p(0()) -> 0()
, p(s(x)) -> x}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ cond1(true(), x) -> cond2(even(x), x)
, cond2(true(), x) -> cond1(neq(x, 0()), div2(x))
, cond2(false(), x) -> cond1(neq(x, 0()), p(x))
, neq(0(), 0()) -> false()
, neq(0(), s(x)) -> true()
, neq(s(x), 0()) -> true()
, neq(s(x), s(y())) -> neq(x, y())
, even(0()) -> true()
, even(s(0())) -> false()
, even(s(s(x))) -> even(x)
, div2(0()) -> 0()
, div2(s(0())) -> 0()
, div2(s(s(x))) -> s(div2(x))
, p(0()) -> 0()
, p(s(x)) -> x}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ cond1(true(), x) -> cond2(even(x), x)
, cond2(true(), x) -> cond1(neq(x, 0()), div2(x))
, cond2(false(), x) -> cond1(neq(x, 0()), p(x))
, neq(0(), 0()) -> false()
, neq(0(), s(x)) -> true()
, neq(s(x), 0()) -> true()
, neq(s(x), s(y())) -> neq(x, y())
, even(0()) -> true()
, even(s(0())) -> false()
, even(s(s(x))) -> even(x)
, div2(0()) -> 0()
, div2(s(0())) -> 0()
, div2(s(s(x))) -> s(div2(x))
, p(0()) -> 0()
, p(s(x)) -> x}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..