LMPO
MAYBE
We consider the following Problem:
Strict Trs:
{ cond1(true(), x, y, z) -> cond2(gr(x, 0()), x, y, z)
, cond2(true(), x, y, z) ->
cond1(or(gr(x, z), gr(y, z)), p(x), y, z)
, cond2(false(), x, y, z) -> cond3(gr(y, 0()), x, y, z)
, cond3(true(), x, y, z) ->
cond1(or(gr(x, z), gr(y, z)), x, p(y), z)
, cond3(false(), x, y, z) -> cond1(or(gr(x, z), gr(y, z)), x, y, z)
, gr(0(), x) -> false()
, gr(s(x), 0()) -> true()
, gr(s(x), s(y)) -> gr(x, y)
, or(false(), false()) -> false()
, or(true(), x) -> true()
, or(x, true()) -> true()
, p(0()) -> 0()
, p(s(x)) -> x}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
MPO
MAYBE
We consider the following Problem:
Strict Trs:
{ cond1(true(), x, y, z) -> cond2(gr(x, 0()), x, y, z)
, cond2(true(), x, y, z) ->
cond1(or(gr(x, z), gr(y, z)), p(x), y, z)
, cond2(false(), x, y, z) -> cond3(gr(y, 0()), x, y, z)
, cond3(true(), x, y, z) ->
cond1(or(gr(x, z), gr(y, z)), x, p(y), z)
, cond3(false(), x, y, z) -> cond1(or(gr(x, z), gr(y, z)), x, y, z)
, gr(0(), x) -> false()
, gr(s(x), 0()) -> true()
, gr(s(x), s(y)) -> gr(x, y)
, or(false(), false()) -> false()
, or(true(), x) -> true()
, or(x, true()) -> true()
, p(0()) -> 0()
, p(s(x)) -> x}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ cond1(true(), x, y, z) -> cond2(gr(x, 0()), x, y, z)
, cond2(true(), x, y, z) ->
cond1(or(gr(x, z), gr(y, z)), p(x), y, z)
, cond2(false(), x, y, z) -> cond3(gr(y, 0()), x, y, z)
, cond3(true(), x, y, z) ->
cond1(or(gr(x, z), gr(y, z)), x, p(y), z)
, cond3(false(), x, y, z) -> cond1(or(gr(x, z), gr(y, z)), x, y, z)
, gr(0(), x) -> false()
, gr(s(x), 0()) -> true()
, gr(s(x), s(y)) -> gr(x, y)
, or(false(), false()) -> false()
, or(true(), x) -> true()
, or(x, true()) -> true()
, p(0()) -> 0()
, p(s(x)) -> x}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ cond1(true(), x, y, z) -> cond2(gr(x, 0()), x, y, z)
, cond2(true(), x, y, z) ->
cond1(or(gr(x, z), gr(y, z)), p(x), y, z)
, cond2(false(), x, y, z) -> cond3(gr(y, 0()), x, y, z)
, cond3(true(), x, y, z) ->
cond1(or(gr(x, z), gr(y, z)), x, p(y), z)
, cond3(false(), x, y, z) -> cond1(or(gr(x, z), gr(y, z)), x, y, z)
, gr(0(), x) -> false()
, gr(s(x), 0()) -> true()
, gr(s(x), s(y)) -> gr(x, y)
, or(false(), false()) -> false()
, or(true(), x) -> true()
, or(x, true()) -> true()
, p(0()) -> 0()
, p(s(x)) -> x}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ cond1(true(), x, y, z) -> cond2(gr(x, 0()), x, y, z)
, cond2(true(), x, y, z) ->
cond1(or(gr(x, z), gr(y, z)), p(x), y, z)
, cond2(false(), x, y, z) -> cond3(gr(y, 0()), x, y, z)
, cond3(true(), x, y, z) ->
cond1(or(gr(x, z), gr(y, z)), x, p(y), z)
, cond3(false(), x, y, z) -> cond1(or(gr(x, z), gr(y, z)), x, y, z)
, gr(0(), x) -> false()
, gr(s(x), 0()) -> true()
, gr(s(x), s(y)) -> gr(x, y)
, or(false(), false()) -> false()
, or(true(), x) -> true()
, or(x, true()) -> true()
, p(0()) -> 0()
, p(s(x)) -> x}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ cond1(true(), x, y, z) -> cond2(gr(x, 0()), x, y, z)
, cond2(true(), x, y, z) ->
cond1(or(gr(x, z), gr(y, z)), p(x), y, z)
, cond2(false(), x, y, z) -> cond3(gr(y, 0()), x, y, z)
, cond3(true(), x, y, z) ->
cond1(or(gr(x, z), gr(y, z)), x, p(y), z)
, cond3(false(), x, y, z) -> cond1(or(gr(x, z), gr(y, z)), x, y, z)
, gr(0(), x) -> false()
, gr(s(x), 0()) -> true()
, gr(s(x), s(y)) -> gr(x, y)
, or(false(), false()) -> false()
, or(true(), x) -> true()
, or(x, true()) -> true()
, p(0()) -> 0()
, p(s(x)) -> x}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..