LMPO
MAYBE
We consider the following Problem:
Strict Trs:
{ dbl(0()) -> 0()
, dbl(s(X)) -> s(s(dbl(X)))
, dbls(nil()) -> nil()
, dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
, sel(0(), cons(X, Y)) -> X
, sel(s(X), cons(Y, Z)) -> sel(X, Z)
, indx(nil(), X) -> nil()
, indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
, from(X) -> cons(X, from(s(X)))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
MPO
MAYBE
We consider the following Problem:
Strict Trs:
{ dbl(0()) -> 0()
, dbl(s(X)) -> s(s(dbl(X)))
, dbls(nil()) -> nil()
, dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
, sel(0(), cons(X, Y)) -> X
, sel(s(X), cons(Y, Z)) -> sel(X, Z)
, indx(nil(), X) -> nil()
, indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
, from(X) -> cons(X, from(s(X)))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ dbl(0()) -> 0()
, dbl(s(X)) -> s(s(dbl(X)))
, dbls(nil()) -> nil()
, dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
, sel(0(), cons(X, Y)) -> X
, sel(s(X), cons(Y, Z)) -> sel(X, Z)
, indx(nil(), X) -> nil()
, indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
, from(X) -> cons(X, from(s(X)))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ dbl(0()) -> 0()
, dbl(s(X)) -> s(s(dbl(X)))
, dbls(nil()) -> nil()
, dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
, sel(0(), cons(X, Y)) -> X
, sel(s(X), cons(Y, Z)) -> sel(X, Z)
, indx(nil(), X) -> nil()
, indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
, from(X) -> cons(X, from(s(X)))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ dbl(0()) -> 0()
, dbl(s(X)) -> s(s(dbl(X)))
, dbls(nil()) -> nil()
, dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
, sel(0(), cons(X, Y)) -> X
, sel(s(X), cons(Y, Z)) -> sel(X, Z)
, indx(nil(), X) -> nil()
, indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
, from(X) -> cons(X, from(s(X)))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ dbl(0()) -> 0()
, dbl(s(X)) -> s(s(dbl(X)))
, dbls(nil()) -> nil()
, dbls(cons(X, Y)) -> cons(dbl(X), dbls(Y))
, sel(0(), cons(X, Y)) -> X
, sel(s(X), cons(Y, Z)) -> sel(X, Z)
, indx(nil(), X) -> nil()
, indx(cons(X, Y), Z) -> cons(sel(X, Z), indx(Y, Z))
, from(X) -> cons(X, from(s(X)))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..