LMPO
MAYBE
We consider the following Problem:
Strict Trs:
{ p(s(N)) -> N
, +(N, 0()) -> N
, +(s(N), s(M)) -> s(s(+(N, M)))
, *(N, 0()) -> 0()
, *(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
, gt(0(), M) -> False()
, gt(NzN, 0()) -> u_4(is_NzNat(NzN))
, u_4(True()) -> True()
, is_NzNat(0()) -> False()
, is_NzNat(s(N)) -> True()
, gt(s(N), s(M)) -> gt(N, M)
, lt(N, M) -> gt(M, N)
, d(0(), N) -> N
, d(s(N), s(M)) -> d(N, M)
, quot(N, NzM) -> u_11(is_NzNat(NzM), N, NzM)
, u_11(True(), N, NzM) -> u_1(gt(N, NzM), N, NzM)
, u_1(True(), N, NzM) -> s(quot(d(N, NzM), NzM))
, quot(NzM, NzM) -> u_01(is_NzNat(NzM))
, u_01(True()) -> s(0())
, quot(N, NzM) -> u_21(is_NzNat(NzM), NzM, N)
, u_21(True(), NzM, N) -> u_2(gt(NzM, N))
, u_2(True()) -> 0()
, gcd(0(), N) -> 0()
, gcd(NzM, NzM) -> u_02(is_NzNat(NzM), NzM)
, u_02(True(), NzM) -> NzM
, gcd(NzN, NzM) -> u_31(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM)
, u_31(True(), True(), NzN, NzM) -> u_3(gt(NzN, NzM), NzN, NzM)
, u_3(True(), NzN, NzM) -> gcd(d(NzN, NzM), NzM)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
MPO
MAYBE
We consider the following Problem:
Strict Trs:
{ p(s(N)) -> N
, +(N, 0()) -> N
, +(s(N), s(M)) -> s(s(+(N, M)))
, *(N, 0()) -> 0()
, *(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
, gt(0(), M) -> False()
, gt(NzN, 0()) -> u_4(is_NzNat(NzN))
, u_4(True()) -> True()
, is_NzNat(0()) -> False()
, is_NzNat(s(N)) -> True()
, gt(s(N), s(M)) -> gt(N, M)
, lt(N, M) -> gt(M, N)
, d(0(), N) -> N
, d(s(N), s(M)) -> d(N, M)
, quot(N, NzM) -> u_11(is_NzNat(NzM), N, NzM)
, u_11(True(), N, NzM) -> u_1(gt(N, NzM), N, NzM)
, u_1(True(), N, NzM) -> s(quot(d(N, NzM), NzM))
, quot(NzM, NzM) -> u_01(is_NzNat(NzM))
, u_01(True()) -> s(0())
, quot(N, NzM) -> u_21(is_NzNat(NzM), NzM, N)
, u_21(True(), NzM, N) -> u_2(gt(NzM, N))
, u_2(True()) -> 0()
, gcd(0(), N) -> 0()
, gcd(NzM, NzM) -> u_02(is_NzNat(NzM), NzM)
, u_02(True(), NzM) -> NzM
, gcd(NzN, NzM) -> u_31(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM)
, u_31(True(), True(), NzN, NzM) -> u_3(gt(NzN, NzM), NzN, NzM)
, u_3(True(), NzN, NzM) -> gcd(d(NzN, NzM), NzM)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ p(s(N)) -> N
, +(N, 0()) -> N
, +(s(N), s(M)) -> s(s(+(N, M)))
, *(N, 0()) -> 0()
, *(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
, gt(0(), M) -> False()
, gt(NzN, 0()) -> u_4(is_NzNat(NzN))
, u_4(True()) -> True()
, is_NzNat(0()) -> False()
, is_NzNat(s(N)) -> True()
, gt(s(N), s(M)) -> gt(N, M)
, lt(N, M) -> gt(M, N)
, d(0(), N) -> N
, d(s(N), s(M)) -> d(N, M)
, quot(N, NzM) -> u_11(is_NzNat(NzM), N, NzM)
, u_11(True(), N, NzM) -> u_1(gt(N, NzM), N, NzM)
, u_1(True(), N, NzM) -> s(quot(d(N, NzM), NzM))
, quot(NzM, NzM) -> u_01(is_NzNat(NzM))
, u_01(True()) -> s(0())
, quot(N, NzM) -> u_21(is_NzNat(NzM), NzM, N)
, u_21(True(), NzM, N) -> u_2(gt(NzM, N))
, u_2(True()) -> 0()
, gcd(0(), N) -> 0()
, gcd(NzM, NzM) -> u_02(is_NzNat(NzM), NzM)
, u_02(True(), NzM) -> NzM
, gcd(NzN, NzM) -> u_31(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM)
, u_31(True(), True(), NzN, NzM) -> u_3(gt(NzN, NzM), NzN, NzM)
, u_3(True(), NzN, NzM) -> gcd(d(NzN, NzM), NzM)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ p(s(N)) -> N
, +(N, 0()) -> N
, +(s(N), s(M)) -> s(s(+(N, M)))
, *(N, 0()) -> 0()
, *(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
, gt(0(), M) -> False()
, gt(NzN, 0()) -> u_4(is_NzNat(NzN))
, u_4(True()) -> True()
, is_NzNat(0()) -> False()
, is_NzNat(s(N)) -> True()
, gt(s(N), s(M)) -> gt(N, M)
, lt(N, M) -> gt(M, N)
, d(0(), N) -> N
, d(s(N), s(M)) -> d(N, M)
, quot(N, NzM) -> u_11(is_NzNat(NzM), N, NzM)
, u_11(True(), N, NzM) -> u_1(gt(N, NzM), N, NzM)
, u_1(True(), N, NzM) -> s(quot(d(N, NzM), NzM))
, quot(NzM, NzM) -> u_01(is_NzNat(NzM))
, u_01(True()) -> s(0())
, quot(N, NzM) -> u_21(is_NzNat(NzM), NzM, N)
, u_21(True(), NzM, N) -> u_2(gt(NzM, N))
, u_2(True()) -> 0()
, gcd(0(), N) -> 0()
, gcd(NzM, NzM) -> u_02(is_NzNat(NzM), NzM)
, u_02(True(), NzM) -> NzM
, gcd(NzN, NzM) -> u_31(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM)
, u_31(True(), True(), NzN, NzM) -> u_3(gt(NzN, NzM), NzN, NzM)
, u_3(True(), NzN, NzM) -> gcd(d(NzN, NzM), NzM)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ p(s(N)) -> N
, +(N, 0()) -> N
, +(s(N), s(M)) -> s(s(+(N, M)))
, *(N, 0()) -> 0()
, *(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
, gt(0(), M) -> False()
, gt(NzN, 0()) -> u_4(is_NzNat(NzN))
, u_4(True()) -> True()
, is_NzNat(0()) -> False()
, is_NzNat(s(N)) -> True()
, gt(s(N), s(M)) -> gt(N, M)
, lt(N, M) -> gt(M, N)
, d(0(), N) -> N
, d(s(N), s(M)) -> d(N, M)
, quot(N, NzM) -> u_11(is_NzNat(NzM), N, NzM)
, u_11(True(), N, NzM) -> u_1(gt(N, NzM), N, NzM)
, u_1(True(), N, NzM) -> s(quot(d(N, NzM), NzM))
, quot(NzM, NzM) -> u_01(is_NzNat(NzM))
, u_01(True()) -> s(0())
, quot(N, NzM) -> u_21(is_NzNat(NzM), NzM, N)
, u_21(True(), NzM, N) -> u_2(gt(NzM, N))
, u_2(True()) -> 0()
, gcd(0(), N) -> 0()
, gcd(NzM, NzM) -> u_02(is_NzNat(NzM), NzM)
, u_02(True(), NzM) -> NzM
, gcd(NzN, NzM) -> u_31(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM)
, u_31(True(), True(), NzN, NzM) -> u_3(gt(NzN, NzM), NzN, NzM)
, u_3(True(), NzN, NzM) -> gcd(d(NzN, NzM), NzM)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ p(s(N)) -> N
, +(N, 0()) -> N
, +(s(N), s(M)) -> s(s(+(N, M)))
, *(N, 0()) -> 0()
, *(s(N), s(M)) -> s(+(N, +(M, *(N, M))))
, gt(0(), M) -> False()
, gt(NzN, 0()) -> u_4(is_NzNat(NzN))
, u_4(True()) -> True()
, is_NzNat(0()) -> False()
, is_NzNat(s(N)) -> True()
, gt(s(N), s(M)) -> gt(N, M)
, lt(N, M) -> gt(M, N)
, d(0(), N) -> N
, d(s(N), s(M)) -> d(N, M)
, quot(N, NzM) -> u_11(is_NzNat(NzM), N, NzM)
, u_11(True(), N, NzM) -> u_1(gt(N, NzM), N, NzM)
, u_1(True(), N, NzM) -> s(quot(d(N, NzM), NzM))
, quot(NzM, NzM) -> u_01(is_NzNat(NzM))
, u_01(True()) -> s(0())
, quot(N, NzM) -> u_21(is_NzNat(NzM), NzM, N)
, u_21(True(), NzM, N) -> u_2(gt(NzM, N))
, u_2(True()) -> 0()
, gcd(0(), N) -> 0()
, gcd(NzM, NzM) -> u_02(is_NzNat(NzM), NzM)
, u_02(True(), NzM) -> NzM
, gcd(NzN, NzM) -> u_31(is_NzNat(NzN), is_NzNat(NzM), NzN, NzM)
, u_31(True(), True(), NzN, NzM) -> u_3(gt(NzN, NzM), NzN, NzM)
, u_3(True(), NzN, NzM) -> gcd(d(NzN, NzM), NzM)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..