LMPO
MAYBE
We consider the following Problem:
Strict Trs:
{ div(x, s(y)) -> d(x, s(y), 0())
, d(x, s(y), z) -> cond(ge(x, z), x, y, z)
, cond(true(), x, y, z) -> s(d(x, s(y), plus(s(y), z)))
, cond(false(), x, y, z) -> 0()
, ge(u, 0()) -> true()
, ge(0(), s(v)) -> false()
, ge(s(u), s(v)) -> ge(u, v)
, plus(n, 0()) -> n
, plus(n, s(m)) -> s(plus(n, m))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
MPO
MAYBE
We consider the following Problem:
Strict Trs:
{ div(x, s(y)) -> d(x, s(y), 0())
, d(x, s(y), z) -> cond(ge(x, z), x, y, z)
, cond(true(), x, y, z) -> s(d(x, s(y), plus(s(y), z)))
, cond(false(), x, y, z) -> 0()
, ge(u, 0()) -> true()
, ge(0(), s(v)) -> false()
, ge(s(u), s(v)) -> ge(u, v)
, plus(n, 0()) -> n
, plus(n, s(m)) -> s(plus(n, m))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ div(x, s(y)) -> d(x, s(y), 0())
, d(x, s(y), z) -> cond(ge(x, z), x, y, z)
, cond(true(), x, y, z) -> s(d(x, s(y), plus(s(y), z)))
, cond(false(), x, y, z) -> 0()
, ge(u, 0()) -> true()
, ge(0(), s(v)) -> false()
, ge(s(u), s(v)) -> ge(u, v)
, plus(n, 0()) -> n
, plus(n, s(m)) -> s(plus(n, m))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ div(x, s(y)) -> d(x, s(y), 0())
, d(x, s(y), z) -> cond(ge(x, z), x, y, z)
, cond(true(), x, y, z) -> s(d(x, s(y), plus(s(y), z)))
, cond(false(), x, y, z) -> 0()
, ge(u, 0()) -> true()
, ge(0(), s(v)) -> false()
, ge(s(u), s(v)) -> ge(u, v)
, plus(n, 0()) -> n
, plus(n, s(m)) -> s(plus(n, m))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ div(x, s(y)) -> d(x, s(y), 0())
, d(x, s(y), z) -> cond(ge(x, z), x, y, z)
, cond(true(), x, y, z) -> s(d(x, s(y), plus(s(y), z)))
, cond(false(), x, y, z) -> 0()
, ge(u, 0()) -> true()
, ge(0(), s(v)) -> false()
, ge(s(u), s(v)) -> ge(u, v)
, plus(n, 0()) -> n
, plus(n, s(m)) -> s(plus(n, m))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ div(x, s(y)) -> d(x, s(y), 0())
, d(x, s(y), z) -> cond(ge(x, z), x, y, z)
, cond(true(), x, y, z) -> s(d(x, s(y), plus(s(y), z)))
, cond(false(), x, y, z) -> 0()
, ge(u, 0()) -> true()
, ge(0(), s(v)) -> false()
, ge(s(u), s(v)) -> ge(u, v)
, plus(n, 0()) -> n
, plus(n, s(m)) -> s(plus(n, m))}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..