LMPO
MAYBE
We consider the following Problem:
Strict Trs:
{ minus(x, x) -> 0()
, minus(x, y) -> cond(equal(min(x, y), y), x, y)
, cond(true(), x, y) -> s(minus(x, s(y)))
, min(0(), v) -> 0()
, min(u, 0()) -> 0()
, min(s(u), s(v)) -> s(min(u, v))
, equal(0(), 0()) -> true()
, equal(s(x), 0()) -> false()
, equal(0(), s(y)) -> false()
, equal(s(x), s(y)) -> equal(x, y)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
MPO
MAYBE
We consider the following Problem:
Strict Trs:
{ minus(x, x) -> 0()
, minus(x, y) -> cond(equal(min(x, y), y), x, y)
, cond(true(), x, y) -> s(minus(x, s(y)))
, min(0(), v) -> 0()
, min(u, 0()) -> 0()
, min(s(u), s(v)) -> s(min(u, v))
, equal(0(), 0()) -> true()
, equal(s(x), 0()) -> false()
, equal(0(), s(y)) -> false()
, equal(s(x), s(y)) -> equal(x, y)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ minus(x, x) -> 0()
, minus(x, y) -> cond(equal(min(x, y), y), x, y)
, cond(true(), x, y) -> s(minus(x, s(y)))
, min(0(), v) -> 0()
, min(u, 0()) -> 0()
, min(s(u), s(v)) -> s(min(u, v))
, equal(0(), 0()) -> true()
, equal(s(x), 0()) -> false()
, equal(0(), s(y)) -> false()
, equal(s(x), s(y)) -> equal(x, y)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ minus(x, x) -> 0()
, minus(x, y) -> cond(equal(min(x, y), y), x, y)
, cond(true(), x, y) -> s(minus(x, s(y)))
, min(0(), v) -> 0()
, min(u, 0()) -> 0()
, min(s(u), s(v)) -> s(min(u, v))
, equal(0(), 0()) -> true()
, equal(s(x), 0()) -> false()
, equal(0(), s(y)) -> false()
, equal(s(x), s(y)) -> equal(x, y)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP*
MAYBE
We consider the following Problem:
Strict Trs:
{ minus(x, x) -> 0()
, minus(x, y) -> cond(equal(min(x, y), y), x, y)
, cond(true(), x, y) -> s(minus(x, s(y)))
, min(0(), v) -> 0()
, min(u, 0()) -> 0()
, min(s(u), s(v)) -> s(min(u, v))
, equal(0(), 0()) -> true()
, equal(s(x), 0()) -> false()
, equal(0(), s(y)) -> false()
, equal(s(x), s(y)) -> equal(x, y)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..
Small POP* (PS)
MAYBE
We consider the following Problem:
Strict Trs:
{ minus(x, x) -> 0()
, minus(x, y) -> cond(equal(min(x, y), y), x, y)
, cond(true(), x, y) -> s(minus(x, s(y)))
, min(0(), v) -> 0()
, min(u, 0()) -> 0()
, min(s(u), s(v)) -> s(min(u, v))
, equal(0(), 0()) -> true()
, equal(s(x), 0()) -> false()
, equal(0(), s(y)) -> false()
, equal(s(x), s(y)) -> equal(x, y)}
StartTerms: basic terms
Strategy: innermost
Certificate: MAYBE
Proof:
The input cannot be shown compatible
Arrrr..